CF468A | 24 Game 找规律+打表
(翻译版本来自 Luogu by lonelysir )
题目描述
小X一直很喜欢一个纸牌游戏:“24点”,但最近他发现这个游戏太简单了,所以他发明了一个新游戏。
你有一个整数序列,包括n个整数:1,2,3,...,n。步骤很简单,你可以从其中拿出两个数,我们假设它们是a和b,将这两个数从序列中删除,并将a+b、a-b或a×b放入这个序列。
经过n−1次操作后,序列中只会剩下一个数,你能把这个数变成是24吗?
输入格式
一行,包括一个数n。 输出格式
如果可以经过操作计算出24,那么在第一行输出"YES",否则输出"NO"。
在可以的前提下,接下来的 \(n−1\) 行中,每行输出一个计算操作,形如 \("a~~op~~b~~=~~c"\),a和b表示你选择的数,而\(~op~\),则是你使用的计算符号(加、减或乘)。算式中 \(abs(c)\) 不会超过 \(|10^8|\)
输出格式
请注意输出的每个算式的字符与数字之间必须有空格。
如果你有多种解决的办法,输出任意一个即可
输入输出样例
输入 #1
1
输出 #1
NO
输入 #2
8
输出 #2
YES
8 * 7 = 56
6 * 5 = 30
3 - 4 = -1
1 - 2 = -1
30 - -1 = 31
56 - 31 = 25
25 + -1 = 24
——————————————————————————————————————————
想着练习一下暴搜搜到的题目,没想到是个规律题233
如果枚举每一种情况的话复杂度就上天了,于是我们开始挖掘题目的特殊性质。
注意到给出的\(~N~\)个整数,分别是\(~1、2、3……N~\)
而每连续的四个整数往往可以仅通过加减法组成\(~\),
例如,有四个连续整数:\(~8,9,10,11~\)
\(~10~+~9~-~8~-~11~=~0~\)
于是只要从数列的末尾开始四个四个地消除(\(0\)对答案没有贡献),直到剩余 \(4~-~7\) 个数
通过人脑的运算我们可以打表出\(N=4、5、6、7\)时的答案,然后汇总按照题目规范输出即可
PS:当\(~N=1、2、3~\)时无解,输出"\(~NO~\)"
辛苦写SPJ的人了
代码如下:
#include <bits/stdc++.h>
using namespace std;
int n;
int main() {
scanf("%d",&n);
if (n==1 || n==2 || n==3) { printf("NO"); return 0; }
printf("YES\n");
while (n>=8) {
//n n-1 n-2 n-3
printf("%d - %d = 1\n",n,n-1);
printf("%d - %d = -1\n",n-3,n-2);
printf("1 + -1 = 0\n");
printf("%d + 0 = %d\n",n-4,n-4);
n-=4;
}
if (n==4) {
printf("1 * 2 = 2\n");
printf("2 * 3 = 6\n");
printf("4 * 6 = 24");
}
else if (n==5) {
printf("3 + 4 = 7\n");
printf("7 + 5 = 12\n");
printf("12 * 2 = 24\n");
printf("24 * 1 = 24");
}
else if (n==6) {
printf("6 - 3 = 3\n");
printf("3 + 4 = 7\n");
printf("7 + 5 = 12\n");
printf("12 * 2 = 24\n");
printf("24 * 1 = 24");
}
else if (n==7) {
printf("7 - 6 = 1\n");
printf("3 + 4 = 7\n");
printf("7 + 5 = 12\n");
printf("12 * 2 = 24\n");
printf("24 * 1 = 24\n");
printf("24 * 1 = 24");
}
return 0;
}
其实好像分奇偶性讨论会更简单
CF468A | 24 Game 找规律+打表的更多相关文章
- HDU 4731 找规律,打表
http://acm.hust.edu.cn/vjudge/contest/126262#problem/D 分为3种情况,n=1,n=2,n>=3 其中需要注意的是n=2的情况,通过打表找规律 ...
- UVA 10706 Number Sequence (找规律 + 打表 + 查找)
Problem B Number Sequence Input: standard input Output: standard output Time Limit: 1 second A singl ...
- ACM-ICPC 2018 南京赛区网络预赛 - J. Sum (找规律+打表)
题意:\(f(i):i\)能拆分成两个数的乘积,且要求这两个数中各自都没有出现超过1次的质因子.每次给出n,求\(\sum_{i=1}^{n}f(i)\) 分析:\(1 \le n \le 2e7\) ...
- hdu 3032 Nim or not Nim? (sg函数打表找规律)
题意:有N堆石子,每堆有s[i]个,Alice和Bob两人轮流取石子,可以从一堆中取任意多的石子,也可以把一堆石子分成两小堆 Alice先取,问谁能获胜 思路:首先观察这道题的数据范围 1 ≤ N ...
- 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛
Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...
- E - Fibonacci Again(找规律)
逐渐发现找规律的美妙之处啦,真不错,用普通方法解决很久或者很麻烦的问题,找到规律就很方便,算法最主要还是思想 Description There are another kind of Fibonac ...
- Codeforces Beta Round #24 D. Broken robot (打表找规律)
题目链接: 点击我打开链接 题目大意: 给你 \(n,j\),再给出 \(m[0]\) 的坐标和\(a[0]-a[n-1]\) 的坐标. 让你输出 \(m[j]\) 的坐标,其中 \(m[i]\) 和 ...
- 打表找规律C - Insertion Sort Gym - 101955C
题目链接:https://cn.vjudge.net/contest/273377#problem/C 给你 n,m,k. 这个题的意思是给你n个数,在对前m项的基础上排序的情况下,问你满足递增子序列 ...
- hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)
Nim or not Nim? Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
随机推荐
- (原)NSQ源码阅读和分析(1)
原文出处:https://www.cnblogs.com/lihaiping/p/12324371.html 本文记录自己在阅读和学习nsq源码的时候的一些学习笔记,主要目的是个人总结和方便后期查阅. ...
- TCP协议三次握手(通信)
在<计算机网络>一书中其中有提到,三次握手的目的是“为了防止已经失效的连接请求报文段突然又传到服务端,因而产生错误”,这种情况是:一端(client)A发出去的第一个连接请求报文并没有丢失 ...
- Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数
Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数 题目描述 给你一个长为n的序列a,有n*(n+1)/2个子区间,问这些子区间里面和为完全平方数的子区间个数 输入描述: 第一行一个数n 第 ...
- javascript 动态加载javascript文件
/* loadFile(data, callback): 动态加载js文件 data: 存放需要加载的js文件的url("url" || ["url", &qu ...
- 如何构建OpenStack镜像
本文以制作CentOS7.2镜像为例,详细介绍手动制作OpenStack镜像详细步骤,解释每一步这么做的原因.镜像上传到OpenStack glance,支持以下几个功能: 支持密码注入功能(nova ...
- centos6.5和centos7.5统一字符集为zh_CN.UTF-8解决系统和MySQL数据库乱码问题
linux的服务器需要做的操作 centos6.5下: 修改默认字符集为 zh_CN.UTF-8,如果没有中文语言包可能需要安装中文语言包支持 [root@meinv01 ~]# yum groupi ...
- 【转载】SPI总线和I2C总线的异同点
来源:https://blog.csdn.net/lishun1422840684/article/details/77776763 总结的简单.明了.适用! 一:SPI接口的全称是"Ser ...
- WinBox软路由的自定义IP设定
软路由ros(MIKRTIK)安装简单步骤 由于本主也是刚刚接触软路由这个硬件方面的知识.所以也是略知皮毛而已,今天通过网上的学习,然后自己总结了一下怎么在软路由中设定一个自定义IP ...
- CoreLocation在iOS8上用法的变化
1.在使用CoreLocation前需要调用如下函数[iOS8专用]: iOS8对定位进行了一些修改,其中包括定位授权的方法,CLLocationManager增加了下面的两个方法: (1)始终允许访 ...
- GitLab Container Registry
通过将GitLab Container Registry集成到GitLab中,每个项目都可以拥有自己的空间来存储其Docker镜像. 1. 启用Container Registry 如果在你的项目的侧 ...