推荐博客 :https://oi.men.ci/fft-notes/

卷积的理解 : https://www.zhihu.com/question/22298352?rf=21686447

题目链接 :http://uoj.ac/problem/34

这是一道模板题。

给你两个多项式,请输出乘起来后的多项式。
输入格式

第一行两个整数 nn 和 mm,分别表示两个多项式的次数。

第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项系数。

第三行 m+1m+1 个整数,表示第二个多项式的 00 到 mm 次项系数。
输出格式

一行 n+m+1n+m+1 个整数,表示乘起来后的多项式的 00 到 n+mn+m 次项系数。
样例一
input

1 2
1 2
1 2 1

output

1 4 5 2

explanation

(1+2x)?(1+2x+x2)=1+4x+5x2+2x3(1+2x)?(1+2x+x2)=1+4x+5x2+2x3。
限制与约定

0≤n,m≤105,保证输入中的系数大于等于 0 且小于等于 9。

时间限制:1s1s

空间限制:256MB

题意  :  给你两个多项式的系数,从 0 到 n 给出,求这两个多项式相乘后的系数,从小到大输出

思路分析 : 裸的 FFT ,参考kuangbin 的板子

    就是要注意以下数组的大小,main中的 len 是 2^k , 因此当m+n = 2e5 左右时,此时 2^k = 260000+ , 因此要注意数组的大小

代码示例:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 2e5+63000;
const double pi = acos(-1.0);
int n, m;
struct Complex{
double x, y;
Complex (double _x=0, double _y=0):x(_x), y(_y){}
Complex operator -(const Complex &b)const{
return Complex(x-b.x, y-b.y);
}
Complex operator +(const Complex &b)const{
return Complex(x+b.x, y+b.y);
}
Complex operator *(const Complex &b)const{
return Complex(x*b.x-y*b.y, x*b.y+y*b.x);
}
}; Complex x1[maxn], x2[maxn];
int sum[maxn];
void change(Complex y[], int len){
for(int i = 1, j = len/2; i < len-1; i++){
if (i < j) swap(y[i], y[j]);
int k = len/2;
while(j >= k){
j -= k;
k /= 2;
}
if (j < k) j += k;
}
} void fft(Complex y[], int len, int on){
change(y, len);
for(int h = 2; h <= len; h <<= 1){
Complex wn(cos(-on*2*pi/h), sin(-on*2*pi/h));
for(int j = 0; j < len; j += h){
Complex w(1, 0);
for(int k = j; k < j+h/2; k++){
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if (on == -1){
for(int i = 0; i < len; i++)
y[i].x /= len;
}
} int main () {
cin >> n >> m;
int len = 1;
while(len <= (n+m)) len <<= 1;
for(int i = 0; i <= n; i++) scanf("%lf", &x1[i].x);
fft(x1, len, 1);
for(int i = 0; i <= m; i++) scanf("%lf", &x2[i].x);
fft(x2, len, 1);
for(int i = 0; i < len; i++)
x1[i] = x1[i]*x2[i];
fft(x1, len, -1);
for(int i = 0; i <= n+m; i++){
sum[i] = (int)(x1[i].x+0.5); // sum[] 是最后的答案
printf("%d%c", sum[i], i ==n+m?'\n':' ');
}
return 0;
}

____________________________________________________________________________

int rev[maxl];
void get_rev(int bit)//bit表示二进制位数,计算一个数在二进制翻转之后形成的新数
{
for(int i=0;i<(1<<bit);i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void fft(cd *a,int n,int dft)//n表示我的多项式位数
{
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
//中间的那个if保证了每个数做多只被交换了1次
//如果不写那么会有一些数被交换两次,导致最终的位置没有变
for(int step=1;step<n;step<<=1)//模拟一个合并的过程
{
cd wn=exp(cd(0,dft*PI/step));//计算当前单位复根
for(int j=0;j<n;j+=step<<1)
{
cd wnk(1,0);//计算当前单位复根
for(int k=j;k<j+step;k++)
{//蝴蝶操作
cd x=a[k];
cd y=wnk*a[k+step];
a[k]=x+y;//这就是上文中F(x)=G(x)+ωH(x)的体现
a[k+step]=x-y;
//后半个“step”中的ω一定和“前半个”中的成相反数
//“红圈”上的点转一整圈“转回来”,转半圈正好转成相反数
//一个数相反数的平方与这个数自身的平方相等..
wnk*=wn;
}
}
}
if(dft==-1) for(int i=0;i<n;i++) a[i]/=n;
//考虑到如果是IDFT操作,整个矩阵中的内容还要乘上1/n
}

FFT 入门的更多相关文章

  1. TOT 傅立叶变换 FFT 入门

    HDU 1402,计算很大的两个数相乘. FFT 只要78ms,这里: 一些FFT 入门资料:http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85. ...

  2. 洛谷p3803 FFT入门

    洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...

  3. FFT入门

    这篇文章会讲讲FFT的原理和代码. 先贴picks博客(又名FFT从入门到精通):http://picks.logdown.com/posts/177631-fast-fourier-transfor ...

  4. hdu1402 FFT入门

    参考这里:http://www.cnblogs.com/pdev/p/4354705.html  http://www.cnblogs.com/pdev/p/4354629.html 题意:求大数乘法 ...

  5. bzoj2179: FFT快速傅立叶

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  6. 多项式FFT相关模板

    自己码了一个模板...有点辛苦...常数十分大,小心使用 #include <iostream> #include <stdio.h> #include <math.h& ...

  7. 3-idiots hdu4609 母函数+FFT 组合数学题

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:1e5个数,求取三个数能形成三角形的概率. 题解(这怎么会是fft入门题QAQ): 概率的算法就是三 ...

  8. 模板:快速傅里叶变换(FFT)

    参考:http://blog.csdn.net/f_zyj/article/details/76037583 如果公式炸了请去我的csdn博客:http://blog.csdn.net/luyouqi ...

  9. HDU 1402 大数乘法 FFT、NTT

    A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. 地址中如果含有"+",发给服务器时"+"变成了空格问题解析

    如地址为sms:+7 915 444-414-444,含有空格. 服务器解码 URLDecoder.decode("sms:+7 915 444-414-444"),返回的是sms ...

  2. 1625 - Color Length——[动态规划]

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. Sublime Text 安装中文、英文字体

    在 Sublimte Text 如何使用默认的字体,英文好看,但是中文不好,所以我就找了一个支持中文英文的字体 YaHei Consolas Hybrid 这个字体看起来效果比较差 下载地址: 如果无 ...

  4. H3C查看保存的配置文件

  5. H3C命令调试debugging--用户视图

    <H3C>terminal debugging     //使用debugging必须使用的命令--打开调试信 息的屏幕输出开关 <H3C>display debugging  ...

  6. 【11.61%】【codeforces 670F】Restore a Number

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  7. 用ubuntu里的vim搭建一个apache2+php+mysql环境一路踩的坑

    先是安装apache2,这个很顺利,一个apt install apache就搞定了. (PS:查看linux是否已经安装了apache服务,可以通过执行apachectl -v,如果安装了的话会显示 ...

  8. 泛圈科技Yottachain区块链云存储打破传统云迎来价值数据存储

    随着物联网时代的发展,更多的数据随之产生.从智能设备到电脑再到视频游戏机,各种各样的信息从不同的电子产品源源不断地涌入.通常,人们将数据存储在本地驱动器中.但是,由于产生的数据量是无限的,超过了本地存 ...

  9. 洛谷p2149----两个终点和两个起点,最短路最大交汇长度!!!

    说实话,这题真第一次见,学到了不少有趣的东西,因吹丝汀!! 思路:因为不可能同时并行和相遇(我也不知道为啥,等我会证明了就来说说) 所以正向建边再反向建边,拓扑排序+dp求最下长路,记录下最大的就是解 ...

  10. PrototypePattern(原型模式)-----Java/.Net

    原型模式(Prototype Pattern)是用于创建重复的对象,同时又能保证性能.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式.