区间dp及优化
看了下感觉区间dp就是一种套路,直接上的板子代码就好了。
基础题ac代码:石子归并
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int dir[][]={{,},{,},{,},{,-},{-,},{-,-},{,-},{-,}};
#define pi acos(-1)
#define ls rt<<1
#define rs rt<<1|1
#define me0(s) memset(s,0,sizeof(s))
#define me1(s) memset(s,1,sizeof(s))
#define mef(s) memset(s,-1,sizeof(s))
#define meinf(s) memset(s,inf,sizeof(s))
#define inf 0x3f3f3f
const int N=1e6+;
inline int read() {
char c=getchar(); int x=, f=;
while(c<''|c>'') {if(c=='-') f=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*f;
}
ll exgcd(ll a,ll b){
if(b==) return a;
exgcd(b,a%b);
}
ll q_pow(ll a,ll b,ll mod){
ll anss=;
while(b){
if(b&) anss=anss*a%mod;
a=a*a%mod;
b>>=;
}
return anss;
}
ll q_mul(ll a,ll b,ll mod){
ll anss=;
while(b){
if(b&) anss=(anss+a)%mod;
a=(a+a)%mod;
b>>=;
}
return anss;
}
int dp[][];
int sum[];
int stone[];
int main(int argc, char * argv[]){
ios::sync_with_stdio(false);
int n;
cin>>n;
me0(sum);
meinf(dp);
for(int i=;i<=n;i++){
cin>>stone[i];
sum[i]=sum[i-]+stone[i];
dp[i][i]=;
}
for(int len=;len<=n;len++){//枚举长度
for(int j=;j+len<=n+;j++){//枚举起点,ends<=n
int ends=j+len-;
for(int i=j;i<ends;i++){//枚举分割点,更新小区间最优解
dp[j][ends]=min(dp[j][ends],dp[j][i]+dp[i+][ends]+sum[ends]-sum[j-]);
}
}
}
cout<<dp[][n]<<endl;
return ;
}
但是这样一眼就看出来了复杂度是n3的复杂度,这个复杂度数据稍稍大点就爆了,所以还是要用到四边形不等式优化。
但是由于个人感觉很复杂,看了不是很懂,直接贴个链接:四边形不等式优化。
优化过的AC的代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int dir[][]={{,},{,},{,},{,-},{-,},{-,-},{,-},{-,}};
#define pi acos(-1)
#define ls rt<<1
#define rs rt<<1|1
#define me0(s) memset(s,0,sizeof(s))
#define me1(s) memset(s,1,sizeof(s))
#define mef(s) memset(s,-1,sizeof(s))
#define meinf(s) memset(s,inf,sizeof(s))
#define inf 0x3f3f3f
const int N=1e6+;
inline int read() {
char c=getchar(); int x=, f=;
while(c<''|c>'') {if(c=='-') f=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*f;
}
ll exgcd(ll a,ll b){
if(b==) return a;
exgcd(b,a%b);
}
ll q_pow(ll a,ll b,ll mod){
ll anss=;
while(b){
if(b&) anss=anss*a%mod;
a=a*a%mod;
b>>=;
}
return anss;
}
ll q_mul(ll a,ll b,ll mod){
ll anss=;
while(b){
if(b&) anss=(anss+a)%mod;
a=(a+a)%mod;
b>>=;
}
return anss;
}
int dp[][];
int sum[];
int stone[];
int main(int argc, char * argv[]){
ios::sync_with_stdio(false);
int n;
cin>>n;
me0(sum);
meinf(dp);
int s[][];
for(int i=;i<=n;i++){
cin>>stone[i];
sum[i]=sum[i-]+stone[i];
dp[i][i]=;
s[i][i]=i;
}
for(int len=;len<=n;len++){//枚举长度
for(int j=;j+len<=n+;j++){//枚举起点,ends<=n
int ends=j+len-;
for(int k=s[j][ends-];k<=s[j+][ends];k++){
if(dp[j][ends]>dp[j][k]+dp[k+][ends]+sum[ends]-sum[j-]){
dp[j][ends]=dp[j][k]+dp[k+][ends]+sum[ends]-sum[j-];
s[j][ends]=k;
}
}
}
}
cout<<dp[][n]<<endl;
return ;
}
区间dp及优化的更多相关文章
- HDU3480_区间DP平行四边形优化
HDU3480_区间DP平行四边形优化 做到现在能一眼看出来是区间DP的问题了 也能够知道dp[i][j]表示前 i 个节点被分为 j 个区间所取得的最优值的情况 cost[i][j]表示从i ...
- POJ 1160 经典区间dp/四边形优化
链接http://poj.org/problem?id=1160 很好的一个题,涉及到了以前老师说过的一个题目,可惜没往那上面想. 题意,给出N个城镇的地址,他们在一条直线上,现在要选择P个城镇建立邮 ...
- codeforces 1101F Trucks and Cities 区间dp+单调优化 好题
题目传送门 题意简述:(来自洛谷) 有n个城市坐落在一条数轴上,第ii个城市位于位置ai. 城市之间有m辆卡车穿行.每辆卡车有四个参数:si为起点编号,fi为终点编号,ci表示每行驶1个单位长 ...
- UVA - 1632 Alibaba (区间dp+常数优化)
题目链接 设$dp[l][r][p]$为走完区间$[l,r]$,在端点$p$时所需的最短时间($p=0$代表在左端点,$p=1$代表在右端点) 根据题意显然有状态转移方程$\left\{\begin{ ...
- 蓝桥杯:合并石子(区间DP+平行四边形优化)
http://lx.lanqiao.cn/problem.page?gpid=T414 题意:…… 思路:很普通的区间DP,但是因为n<=1000,所以O(n^3)只能拿90分.上网查了下了解了 ...
- 51 nod 石子归并 + v2 + v3(区间dp,区间dp+平行四边形优化,GarsiaWachs算法)
题意:就是求石子归并. 题解:当范围在100左右是可以之间简单的区间dp,如果范围在1000左右就要考虑用平行四边形优化. 就是多加一个p[i][j]表示在i到j内的取最优解的位置k,注意能使用平行四 ...
- 51Nod 1022 石子归并 V2(区间DP+四边形优化)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成 ...
- HDU 3506 (环形石子合并)区间dp+四边形优化
Monkey Party Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Tot ...
- hdu3516 Tree Construction (区间dp+四边形优化)
构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...
随机推荐
- 记一次Mysql占用内存过高的优化过程
一.环境说明: 操作系统:CentOS 6.5 x86_64 数据库:Mysql 5.6.22 服务器:阿里云VPS,32G Mem,0 swap 二.问题情况: 1.某日发现公司线上系统的Mysql ...
- Burnside引理&Pólya定理
Burnside's lemma 引例 题目描述 一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色, 问共有多少种本质不同的涂色方案. (若两种方案可通过旋转互相得到,称作本质相同的方案) 解 ...
- CSP-S2019旅游记
CSP-S2019 你问我为什么写旅游记? 因为好像除了旅游我今年啥都没干 Day0 校内模拟一直被吊锤,考前几场几乎要爆零 这提莫就不是什么好兆头 在家二刷水淹东京完回学校,带了一大堆家当上车 去广 ...
- NXOpenC#_Training_2(cn)【转载】
- vs使用出现的一些常见错误(持续更新)
vs2010编译出错时怎么会执行上一次的结果_百度知道https://zhidao.baidu.com/question/193018332.html
- 最短路(sp
#include<stdio.h> #include<iostream> #include<queue> using namespace std; #define ...
- 关于__init__.py
假设程序目录结构如下: ├── checkpoints/ ├── data/ │ ├── __init__.py │ ├── dataset.py │ └── get_data.sh ├── mode ...
- 用PS制作APP的界面图片
今天就教大家怎么做出这种厚度的地方还不是白色的,而是根据界面内容交相呼应的图案的APP界面展示图片. 以苹果5S的尺寸为例. 步骤: 1.新建一个画布尺寸为:640*1136,然后保存,命名如:5S效 ...
- D3.js比例尺 定量比例尺 之 线性比例尺(v3版本)
定量比例尺 : 数学上有函数的概念,不是编程中所说的函数,如线性函数.指数函数.对数函数等,而指的是一个量随着另一个量的变化而变化.例如有一下线性函数 : y=2x+1该函数在二维坐标系中绘制出来的图 ...
- ExecutorService线程池submit的使用
有关线程池ExecutorService,只谈submit的使用 可创建的类型如下: private static ExecutorService pool = Executors.newFixedT ...