题目

考虑推柿子

最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ A\)就好了

显然\(t=t\% B+B\times \lfloor \frac{t}{B} \rfloor\)

于是第一维就是$t%B+(B+1)\times \lfloor \frac{t}{B} \rfloor $

也就是说如果\(t\%B\)的是相等的,那么只要\((B+1)\times \lfloor \frac{t}{B} \rfloor\)在\(mod\ A\)意义下是相等的,那么两个\(t\)就是本质相同的

考虑求一下后面那个东西的循环节,显然是\(\frac{lcm(B+1,A)}{B+1}=\frac{A}{gcd(b+1,A)}\)

再考虑到\(t\%B\)的循环节是\(B\),所以整个的循环节就是\(\frac{AB}{gcd(B+1,A)}\),也就是说\(t\)和\(t+\frac{AB}{gcd(B+1,A)}\)是本质相同的

由此我们把这个问题转化成了一个\(mod\ \frac{AB}{gcd(B+1,A)}\)意义的区间覆盖,我们只需要把这些区间放上去覆盖就好了,最后就是求一下被覆盖的总面积,这个是一个非常普及的贪心问题

非常丢人的写错了区间覆盖

代码

#include <bits/stdc++.h>
#define re register
#define max std::max
#define LL long long
inline LL read() {
LL x = 0;char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3ll) + (x << 1ll) + c - 48, c = getchar();
return x;
}
int n, m;
LL A, B, L;
const int maxn = 1e6 + 5;
struct Seg {LL l, r;} a[maxn], b[maxn << 1];
LL gcd(LL a, LL b) { return !b ? a : gcd(b, a % b); }
inline void add(LL x, LL y) { b[++m].l = x, b[m].r = y; }
inline int cmp(Seg A, Seg B) { return A.l == B.l ? A.r > B.r : A.l < B.l; }
int main() {
n = read(), A = read(), B = read();
for (re int i = 1; i <= n; i++) a[i].l = read(), a[i].r = read();
for (re int i = 1; i <= n; i++) L = max(L, a[i].r);L++;
LL r = gcd(A, B + 1);
if (A / r <= L / B) L = A / r * B;
for (re int i = 1; i <= n; i++) {
LL x = a[i].r / L - a[i].l / L;
if (x >= 2) {add(0, L - 1);break;}
if (x == 1)
add(0, a[i].r % L), add(a[i].l % L, L - 1);
else
add(a[i].l % L, a[i].r % L);
}
std::sort(b + 1, b + m + 1, cmp);
int p = 1;LL ans = 0;
for (re int i = 1; i <= m; i = p) {
LL T = b[i].r;
while (b[p].l <= T && p <= m) T = max(T, b[p].r), p++;
ans += T - b[i].l + 1;
}
printf("%lld\n", ans);
return 0;
}

「APIO 2019」奇怪装置的更多相关文章

  1. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  2. 【LOJ #3144】「APIO 2019」奇怪装置

    题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...

  3. #3146. 「APIO 2019」路灯

    #3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...

  4. #3145. 「APIO 2019」桥梁

    #3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...

  5. 「APIO 2019」桥梁

    题目 三天终于把\(APIO\)做完了 这题还是比较厉害的,如果不知道这是个分块应该就自闭了 考虑一个非常妙的操作,按照操作分块 我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的 ...

  6. 「APIO 2019」路灯

    题目 显然一个熟练的选手应该能一眼看出我们需要维护点对的答案 显然在断开或连上某一条边的时候只会对左右两边联通的点产生贡献,这个拿\(set\)维护一下就好了 那现在的问题就是怎么维护了 考虑一个非常 ...

  7. 「WC 2019」数树

    「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...

  8. LOJ#3054. 「HNOI 2019」鱼

    LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...

  9. 「UNR#1」奇怪的线段树

    「UNR#1」奇怪的线段树 一道好题,感觉解法非常自然. 首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了.然后发现一次染色最下面的那些区间一 ...

随机推荐

  1. Jmeter-【beanshell处理器】-随机获取手机号

    一.通过操作变量 二.引用外部Java文件 三.引用外部class文件

  2. Unity 调用android

    { https://www.bilibili.com/video/av49002527 }

  3. Java——super关键字

    2.3 super关键字 ①super不是引用类型,super中存储的不是内存地址,super指向的不是父类对象. ②super代表的是当前子类对象中的父类型特征. ③什么时候使用super? 类和父 ...

  4. PDO基础

    //PDO:数据访问抽象层 $dsn = "mysql:dbname=mydb;host=localhost";//造PDO对象 $pdo = new PDO($dsn," ...

  5. 【重磅来袭】阿里小程序IDE上线8大功能

    时隔两个月,10月10日阿里小程序IDE上线了uni-app 跨平台研发支持.预览和真机调试交互优化.预检测新增代码扫描等8项功能,进一步完善了阿里小程序IDE的功能池,给大家更好的开发体验和环境. ...

  6. 「题解」:07.16NOIP模拟T2:通讯

    问题 B: 通讯 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 “这一切都是命运石之门的选择.” 试图研制时间机器的机关SERN截获了中二科学家伦太郎发往过去的一条短 信,并由此 ...

  7. OpenSceneGraph | OSG如何存储带纹理osgb格式可以节省空间

      在使用OSG(OpenSceneGraph)存储带纹理osgb格式的过程中,大家会遇到这样一种情况:存储后的osgb文件所占用的大小远大于原始文件的大小,几倍至几十倍.这是为何呢?原因是OSG默认 ...

  8. NX二次开发-UFUN求对象的最大边界框UF_MODL_ask_bounding_box

    NX9+VS2012 #include <uf.h> #include <uf_obj.h> #include <uf_modl.h> #include <u ...

  9. Windows路径操作API函数学习【转载】

    文章出自https://www.cnblogs.com/MakeView660/p/6644838.html 前言 在VC++开发过程中,经常需要用到一些路径操作,比如拼需要的文件路径,搜索路径中的内 ...

  10. P1802 5倍经验日

    P1802 5倍经验日 题目背景 现在乐斗有活动了!每打一个人可以获得5倍经验!absi2011却无奈的看着那一些比他等级高的好友,想着能否把他们干掉.干掉能拿不少经验的. 题目描述 现在absi20 ...