二分判定 覆盖问题 BZOJ 1052
//二分判定 覆盖问题 BZOJ 1052
// 首先确定一个最小矩阵包围所有点,则最优正方形的一个角一定与矩形一个角重合。
// 然后枚举每个角,再解决子问题 #include <bits/stdc++.h>
using namespace std;
#define LL long long
typedef pair<int,int> pii;
const int inf = 1e9;
const int MOD =;
const int N =;
#define clc(a,b) memset(a,b,sizeof(a))
const double eps = 1e-;
void fre() {freopen("in.txt","r",stdin);}
void freout() {freopen("out.txt","w",stdout);}
inline int read() {int x=,f=;char ch=getchar();while(ch>''||ch<'') {if(ch=='-') f=-; ch=getchar();}while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}return x*f;} struct node{
int x[],y[];
int num;
}a,b;
int n,mid; void solve2(node &a,int x1,int y1,int x2,int y2){
int cnt=;
for(int i=;i<a.num;i++){
if(a.x[i]<x1||a.x[i]>x2||a.y[i]>y2||a.y[i]<y1){
a.x[cnt]=a.x[i];
a.y[cnt]=a.y[i];
cnt++;
}
}
a.num=cnt;
}
void solve(node &a,int f){
int x1=inf,x2=-inf,y1=inf,y2=-inf;
for(int i=;i<a.num;i++){
x1=min(x1,a.x[i]);
x2=max(x2,a.x[i]);
y1=min(y1,a.y[i]);
y2=max(y2,a.y[i]);
}
if(f==) solve2(a,x1,y1,x1+mid,y1+mid);
if(f==) solve2(a,x2-mid,y1,x2,y1+mid);
if(f==) solve2(a,x1,y2-mid,x1+mid,y2);
if(f==) solve2(a,x2-mid,y2-mid,x2,y2);
}
bool check(){
for(int s=;s<=;s++){
for(int t=;t<=;t++){
b.num=a.num;
for(int i=;i<b.num;i++){
b.x[i]=a.x[i],b.y[i]=a.y[i];
}
solve(b,s),solve(b,t);
int x1=inf,x2=-inf,y1=inf,y2=-inf;
for(int i=;i<b.num;i++){
x1=min(x1,b.x[i]);
x2=max(x2,b.x[i]);
y1=min(y1,b.y[i]);
y2=max(y2,b.y[i]);
}
if(x2-x1<=mid&&y2-y1<=mid) return true;
}
}
return false;
}
int main(){
n=read();
for(int i=;i<n;i++) a.x[i]=read(),a.y[i]=read();
a.num=n;
int l=,r=inf;
while(l<=r){
mid=(l+r)>>;
if(check()) r=mid-;
else l=mid+;
}
printf("%d\n",l);
return ;
}
二分判定 覆盖问题 BZOJ 1052的更多相关文章
- AC日记——[HAOI2007]覆盖问题 bzoj 1052
1052 思路: 二分答案: 二分可能的长度: 然后递归判断长度是否可行: 先求出刚好覆盖所有点的矩形: 可行的第一个正方形在矩形的一个角上: 枚举四个角上的正方形,然后删去点: 删去一个正方形后,递 ...
- BZOJ 1052: [HAOI2007]覆盖问题
BZOJ 1052: [HAOI2007]覆盖问题 题意:给定平面上横纵坐标在-1e9~1e9内的20000个整数点的坐标,用三个大小相同边平行于坐标轴的正方形覆盖(在边界上的也算),问正方形的边长最 ...
- [BZOJ 1052][HAOI2007]覆盖问题(二分答案)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1052 分析: 挺有想法的一道题,先二分答案ans,主要是判断的问题. 首先可以弄出把所 ...
- BZOJ 1052 覆盖问题
Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小 ...
- 1052: [HAOI2007]覆盖问题 - BZOJ
Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小 ...
- [BZOJ]1052 覆盖问题(HAOI2007)
三矩形覆盖问题啊……不过听说FJOI还出过双圆覆盖问题? Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来, ...
- 【以前的空间】bzoj 1052 [HAOI2007]覆盖问题
这道题的思路挺简单的……就是可以证明如果要覆盖一个区域内的点,那么一定有一个正方形在这“区域内的点所围成的最大矩形的四个角中的一个”(不要吐槽很多的“的”……),对于长度r是否可以覆盖整个区域内的点, ...
- 【BZOJ 1052】 1052: [HAOI2007]覆盖问题 (乱搞)
1052: [HAOI2007]覆盖问题 Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄 膜把这些小树遮盖起来,经过一番长久的 ...
- BZOJ 1052 HAOI2007 覆盖问题 二分法答案+DFS
标题效果:特定n点.涵盖所有的点与同方三面.斧头要求方垂直边界,最小平方的需求方长值 最大值至少.答案是很明显的二分法 但验证是一个问题 考虑仅仅有三个正方形,故用一个最小矩形覆盖这三个正方形时至少有 ...
随机推荐
- js隐式类型转换,预编译、递归、作用域,作用域链、闭包、立即执行函数、继承圣杯模式
隐式类型转换 调用Number()当有运算符(加减乘除,求余)时,会调用Number()转为数字再运算,除了 加 当 有字符串时就变身成拼接Boolean();String(); typeof()st ...
- 【转载】浅谈Linux内存管理机制
经常遇到一些刚接触Linux的新手会问内存占用怎么那么多? 在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然.这是Linux内存管理的一个优秀特性,在 ...
- 学习servlet之路--javax-servlet不存在
我在编译一个servlet菜鸟教程下提供的包含有javax.servlet包的java文件,变异出错, import java.io.*;import javax.servlet.*;import j ...
- Ubuntu下搭建Pixhawk开发环境
安装提示 需要网络环境,不然下载会很慢. 工具安装 1. 权限设置 sudo usermod -a -G dialout $USER 代码输入可以拷贝,但是不可以用快捷键. 需要输入密码,输入密码无显 ...
- Celery - 异步任务 , 定时任务 , 周期任务
1.什么是Celery?Celery 是芹菜Celery 是基于Python实现的模块, 用于执行异步定时周期任务的其结构的组成是由 1.用户任务 app 2.管道 broker 用于存储 ...
- Git log和reflog
1.log log命令可以显示所有提交过的版本信息.显示信息如下: Administrator@USER-20171026MG MINGW64 ~/Desktop/lyf (master) $ gi ...
- 7_2.springboot2.x启动配置原理_2.运行run方法
当创建完SpringApplication对象之后运行run方法 public ConfigurableApplicationContext run(String... args) { StopWat ...
- <随便写> 多线程的例子
''' 一个线程在使用这个共享的时候,其他线程必须等待他结束 通过"锁"实现,作用就是防止多个线程使用这片内存空间 进程:程序的一次执行 线程:cpu运算的基本调度单位 多线程:大 ...
- Ubuntu 18.04/18.10快速开启Google BBR的方法
说明:Ubuntu 18.04改变挺大的,内核直接升到了正式版4.15,而BBR内核要求为4.9,也就是说满足了,所以我们不需要换内核就可以很快的开启BBR,这里简单说下方法. 提示:Ubuntu 1 ...
- nginx源码分析-源码结构
本文主要简单介绍nginx源码目录结构.程序编译流程.如何构建学习nginx的环境等.本文以及后续nginx源码分析文章是基于nginx当前(2009-02-27)的稳定版本0.6.35进行的分析,该 ...