Python2 生成器 简介
1.
A generator: provide a kind of function that can return an intermediate result ("the next value") to its caller, but maintaining the function's local state so that the function can be resumed again right where it left off.
A very simple example:
def fib():
a, b = 0, 1
while 1:
yield b
a, b = b, a+b
When fib() is first invoked, it sets a to 0 and b to 1, then yields b back to its caller. The caller sees 1. When fib is resumed, from its point of view the yield statement is really the same as, say, a print statement: fib continues after the yield with all local state intact. a and b then become 1 and 1, and fib loops back to the yield, yielding 1 to its invoker. And so on. From fib's point of view it's just delivering a sequence of results. But from its caller's point of view, the fib invocation is an iterable object that can be resumed at will.
The yield statement may only be used inside functions. A function that contains a yield statement is called a generator function.
When a generator function is called, the actual arguments are bound to function-local formal argument names in the usual way, but no code in the body of the function is executed. Instead a generator-iterator object is returned; this conforms to the iterator protocol, so in particular can be used in for-loops in a natural way.
Each time the .next() method of a generator-iterator is invoked, the code in the body of the generator-function is executed until a yield or return statement (see below) is encountered, or until the end of the body is reached.
If a yield statement is encountered, the state of the function is frozen, and the value of expression_list is returned to .next()'s caller. By "frozen" we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time .next() is invoked, the function can proceed exactly as if the yield statement were just another external call.
Note that an expression_list is not allowed on return statements in the body of a generator.
When a return statement is encountered, control proceeds as in any function return, executing the appropriate finally clauses (if any exist). Then a StopIteration exception is raised, signalling that the iterator is exhausted. A StopIteration exception is also raised if control flows off the end of the generator without an explicit return.
2: send
A new method for generator-iterators is proposed, called send(). It takes exactly one argument, which is the value that should be sent in to the generator. Calling send(None) is exactly equivalent to calling a generator's next() method. Calling send() with any other value is the same, except that the value produced by the generator's current yield expression will be different.
Because generator-iterators begin execution at the top of the generator's function body, there is no yield expression to receive a value when the generator has just been created. Therefore, calling send() with a non-None argument is prohibited when the generator iterator has just started, and a TypeError is raised if this occurs (presumably due to a logic error of some kind). Thus, before you can communicate with a coroutine you must first call next() or send(None) to advance its execution to the first yield expression.
The yield-statement will be allowed to be used on the right-hand side of an assignment; in that case it is referred to as yield-expression. The value of this yield-expression is None unless send() was called with a non-None argument; see below.
Note that a yield-statement or yield-expression without an expression is now legal. This makes sense: when the information flow in the next() call is reversed, it should be possible to yield without passing an explicit value (yield is of course equivalent to yield None).
When send(value) is called, the yield-expression that it resumes will return the passed-in value. When next() is called, the resumed yield-expression will return None. If the yield-expression is a yield-statement, this returned value is ignored, similar to ignoring the value returned by a function call used as a statement.
3: Exceptions and Cleanup
throw(type, value=None, traceback=None)
g.throw(type, value, traceback) causes the specified exception to be thrown at the point where the generator g is currently suspended (i.e. at a yield-statement, or at the start of its function body if next() has not been called yet). If the generator catches the exception and yields another value, that is the return value of g.throw(). If it doesn't catch the exception, the throw() appears to raise the same exception passed it (it falls through). If the generator raises another exception (this includes the StopIteration produced when it returns) that exception is raised by the throw() call. In summary, throw() behaves like next() or send(), except it raises an exception at the suspension point. If the generator is already in the closed state, throw() just raises the exception it was passed without executing any of the generator's code.
The effect of raising the exception is exactly as if the statement: raise type, value, traceback
was executed at the suspension point. The type argument must not be None, and the type and value must be compatible.
g.close() is defined by the following pseudo-code:
def close(self):
try:
self.throw(GeneratorExit)
except (GeneratorExit, StopIteration):
pass
else:
raise RuntimeError("generator ignored GeneratorExit")
# Other exceptions are not caught
https://www.python.org/dev/peps/pep-0342/
https://www.python.org/dev/peps/pep-0255/
Python2 生成器 简介的更多相关文章
- Python3.x:生成器简介
Python3.x:生成器简介 概念 任何使用yield的函数都称之为生成器:使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调 ...
- 【翻译】ES6生成器简介
原文地址:http://davidwalsh.name/es6-generators ES6生成器全部文章: The Basics Of ES6 Generators Diving Deeper Wi ...
- Python基础之生成器
1.生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比 ...
- c#分布式ID生成器
c#分布式ID生成器 简介 这个是根据twitter的snowflake来写的.这里有中文的介绍. 如上图所示,一个64位ID,除了最左边的符号位不用(固定为0,以保证生成的ID都是正数),还剩余 ...
- python学习日记(迭代器、生成器)-乱七八糟
迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退 ...
- 【awesome-dotnet-core-learning】(3)-Bogus-假数据生成器
[awesome-dotnet-core-learning](3)-Bogus-假数据生成器 简介 Bogus一个简单而强大的假数据生成器,用于C#,F#和VB.NET.从著名的faker.js移植过 ...
- 【scikit-learn】06:make_blobs聚类数据生成器
版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/kevinelstri/article/ ...
- PythonI/O进阶学习笔记_9.python的生成器
content: 1. 什么是生成器 2. 生成器的实现 3. 生成器的应用 一.生成器简介 1.什么是生成器 在 Python 中,使用了 yield 的函数被称为生成器(genera ...
- 生成器和迭代器_python
一.生成器简介(generator) 在进行较大数据的存储,如果直接存储在列表之中,则会可能造成内存的不够与速度的减慢,因为列表创建完是立即创建并存在的,而在python中生成器(generator) ...
随机推荐
- openldap 2.4 centos7 常用配置
新版的openldap弃用了sldap.conf配置文件,引入一种动态配置,所以尽量不要直接修改配文件 如果直接修改了配置文件可以用slaptest -u命令检查 1.安装openldap,可能需要e ...
- windows搭建rabbitmq ha
1.安装erlang22.0 rabbitmq 3.7.15 2.bin下执行命令:rabbitmq-plugins enable rabbitmq_management3.替换.erlang.coo ...
- ES6学习笔记之解构赋值
1.数组的解构赋值 简单用法 { // 旧 let a=1,b=3; //新 let [a,b]=[1,3]; console.log(a,b);// 1 3 } 只要等号两边的模式相同,左边的变量就 ...
- git与github建立链接(将本次项目与网络GitHub同步) --转存笔记
转载自:https://blog.csdn.net/qq_36529459/article/details/79047220 1.(先进入项目文件夹)通过命令 git init 把这个目录变成git可 ...
- wpf样式与行为
- WPF 动画执行后属性无法修改
在做了一个类似QQ展开的动画时,设置了TopProperty,通过改变Window.Top属性来实现展开特效, 但是动画执行了之后,再去设置Window.Top的时候发现修改不了,代码调试后发现值设置 ...
- 关于springmvc 只能在index.jsp页面显示图片的处理办法jsp页面无法显示图片
首先,已经配置好了mvc对静态资源的处理 只有index,jsp可以显示图片 其他页面同样的代码则不显示 后来折腾了半天,发现 index是static的父目录的级别文件 可以向下访问 但是其他的js ...
- 删除 BIRT Report Viewer
去掉首页上的标题BIRT Report Viewer方法:找到Webroot\webcontent\birt\pages\layout\FramesetFragment.jsp文件,在里面定义了标题, ...
- python基础--线程、进程
并发编程: 操作系统:(基于单核研究) 多道技术: 1.空间上的复用 多个程序共用一个计算机 2.时间上的复用 切换+保存状态 例如:洗衣 烧水 做饭 切换: 1.程序遇到IO操作系统会立刻剥夺着CP ...
- NOIP模拟 6.28
NOIP模拟赛6.28 Problem 1 高级打字机(type.cpp/c/pas) [题目描述] 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这 ...