poj1050查找最大子矩阵和
题目:
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 48507 | Accepted: 25662 |
Description
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
Output
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2
Sample Output
15
题意:给你一个N*N的矩阵,求该矩阵的最大子矩阵和。
子矩阵和:该子矩阵中所以元素的和。
解决方法:
用第一个三维数组dp[k][i][j]存第k行 第i~j 列的和。 比如dp[3][1][5]表示从 "第3行第1列" 到 "第3行第5列" 的和。
用第二个三维数组sum[k][i][j]表示"dp[1][i][j]"到"dp[k][i][j]"的和。比如sun[4][2][5]表示前4行 所有第2~5列的和。 注意:所有的数据输出从下标1开始。
然后四层循环统计sum[k2][i][j]-sum[k1][i][j]的最大值。(1<=k1<=k2<=n)
代码:
#include <iostream>
#include <cstring> using namespace std; int mmap[101][101]; //存矩阵
int dp[101][101][101]; //dp[k][i][j]存第k行 第i~j列的和。 比如dp[3][1][5]表示从 "第3行第1列" 到 "第3行第5列" 的和。
int sum[101][101][101]; //sum[k][i][j]表示"dp[1][i][j]"到"dp[k][i][j]"的和。比如sun[4][2][5]表示前4行 所有第2~5列的和。 注意:所有的数据输出从下标1开始。 int n;
int main()
{
while(cin>>n)
{
memset(dp,0,sizeof(dp)); //数组初始化为0
memset(sum,0,sizeof(sum)); //矩阵数据输入
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
cin>>mmap[i][j];
}
} //计算dp数组
for(int k=1;k<=n;k++) //k表示第k行
{
for(int j=1;j<=n;j++) //因为从i~j列所以j放在i的外层
{
for(int i=1;i<=j;i++)
{
//统计从i~j列的和
int sum=0;
for(int p=i;p<=j;p++)
sum+=mmap[k][p];
dp[k][i][j]=sum;
} }
} //计算sum数组
for(int j=1;j<=n;j++)
{
for(int i=1;i<=j;i++)
{
for(int k=1;k<=n;k++)
{
//对应每组 i~j 列,前k行 所有的i~j列的元素的和
sum[k][i][j]+=(dp[k][i][j]+sum[k-1][i][j]);
}
}
} int mmax=-1000000; for(int j=1;j<=n;j++)
{
for(int i=1;i<=j;i++)
{
//对应每组i~j列,统计每组 a~b 行的最大的和。
for(int b=1;b<=n;b++)
{
for(int a=1;a<=b;a++)
{
mmax=max(mmax,sum[b][i][j]-sum[a-1][i][j]);
}
}
}
} cout<<mmax<<endl; }
return 0;
}
poj1050查找最大子矩阵和的更多相关文章
- POJ1050 To the Max 最大子矩阵
POJ1050 给定一个矩阵,求和最大的子矩阵. 将每一列的值进行累加,枚举起始行和结束行,然后就可以线性优化了 复杂度O(n^3) #include<cstdio> #include&l ...
- (线性dp 最大子段和 最大子矩阵和)POJ1050 To the Max
To the Max Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 54338 Accepted: 28752 Desc ...
- poj1050最大子矩阵和
这篇是看了别人的报告写的,就当是屡屡思路好了. 题目大意.给定一个n阶矩阵(方阵),每一个元素中存在一个数字.任务就是求出一个最大的子矩阵使得矩阵元素之间的和是最大的. n=100; 1.矩阵A[m] ...
- [POJ1050]To the Max(最大子矩阵,DP)
题目链接:http://poj.org/problem?id=1050 发现这个题没有写过题解,现在补上吧,思路挺经典的. 思路就是枚举所有的连续的连续的行,比如1 2 3 4 12 23 34 45 ...
- POJ1050最大子矩阵面积
题目:http://poj.org/problem?id=1050 自己用了n^4的像暴搜一样的方法,感到有点奇怪——真的是这样? #include<iostream> #include& ...
- 【poj1050】 To the Max
http://poj.org/problem?id=1050 (题目链接) 题意 求二维最大子矩阵 Solution 数据好像很水,N最大才100,N^4大暴力都可以随便水过. 其实有N^3的做法.枚 ...
- POJ1050:To the max
poj1050:http://poj.org/problem?id=1050 * maximum-subarray 问题的升级版本~ 本题同样是采用DP思想来做,同时有个小技巧处理:就是把二维数组看做 ...
- 《剑指Offer》面试题-二维数组中的查找
题目1384:二维数组中的查找 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:7318 解决:1418 题目描述: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到 ...
- [POJ1050]To the Max (矩阵,最大连续子序列和)
数据弱,暴力过 题意 N^N的矩阵,求最大子矩阵和 思路 悬线?不需要.暴力+前缀和过 代码 //poj1050 //n^4暴力 #include<algorithm> #include& ...
随机推荐
- React从安装到实战
建议:初学者看之前请先看一遍菜鸟教程 可以安装一个ATOM编辑器,本人觉得很好用 一.安装并启动项目:网址 搭建好的项目目录为: 二.开始写项目: 1.组件到界面流程: 定义一个组件app.js导出 ...
- 路飞学城Python-Day78
17-静态文件配置1 静态的文件的配置不能直接将CSS.JS文件直接放在templates的文件夹中 要将所有的静态文件放在static的文件夹中,然后配置上静态文件static的路径 要想访问Dja ...
- 死磕itchat源码--__init__.py
itchat包中的__init__.py是该库的入口:在该文件中的源码如下: # -*- coding: utf-8 -*- from . import content from .core impo ...
- linux下查看mysql版本的四种方法
Linux查看MySQL版本的四种方法 1 在终端下执行 mysql -V 2 在help中查找 mysql --help |grep Distrib 3 在mysql 里查看 select vers ...
- jmeter实现逻辑控制器
- SpringBoot2整合activiti6环境搭建
SpringBoot2整合activiti6环境搭建 依赖 <dependencies> <dependency> <groupId>org.springframe ...
- CNN卷机网络在自然语言处理问题上的应用
首先申明本人的英语很搓,看英文非常吃力,只能用这种笨办法来方便下次阅读.有理解错误的地方,请别喷我. 什么是卷积和什么是卷积神经网络就不讲了,自行google.从在自然语言处理的应用开始(SO, HO ...
- C#强化系列:HttpModule,HttpHandler,HttpHandlerFactory简单使用
这三个对象我们在开发Asp.net程序时经常会用到,似乎很熟悉,但有时候又不太确定.本文通过一个简单的例子来直观的比较一下这三个对象的使用.HttpModule:Http模块,可以在页面处理前后.应用 ...
- ARP(地址解析协议)
目录 1. ARP 概述 2. ARP 协议工作原理 3. ARP 缓存 4. ARP 报文格式 5. 抓包分析 5.1. ARP 请求报文 5.2. ARP 应答报文 6. 免费 ARP 7. AR ...
- 编译驱动模块所需的Makefile
目标定义:就是用来定义哪些内容作为模块编译,哪些内容要编译并链接进内核. obj-y += foo.o 表示要由foo.c或者foo.s文件编译得到foo.o并链接进内核: obj-m则表示该文件要作 ...