Chloe and pleasant prizes

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Generous sponsors of the olympiad in which Chloe and Vladik took part allowed all the participants to choose a prize for them on their own. Christmas is coming, so sponsors decided to decorate the Christmas tree with their prizes.

They took n prizes for the contestants and wrote on each of them a unique id (integer from 1 to n). A gift i is characterized by integer ai — pleasantness of the gift. The pleasantness of the gift can be positive, negative or zero. Sponsors placed the gift 1 on the top of the tree. All the other gifts hung on a rope tied to some other gift so that each gift hung on the first gift, possibly with a sequence of ropes and another gifts. Formally, the gifts formed a rooted tree with n vertices.

The prize-giving procedure goes in the following way: the participants come to the tree one after another, choose any of the remaining gifts and cut the rope this prize hang on. Note that all the ropes which were used to hang other prizes on the chosen one are not cut. So the contestant gets the chosen gift as well as the all the gifts that hang on it, possibly with a sequence of ropes and another gifts.

Our friends, Chloe and Vladik, shared the first place on the olympiad and they will choose prizes at the same time! To keep themselves from fighting, they decided to choose two different gifts so that the sets of the gifts that hang on them with a sequence of ropes and another gifts don't intersect. In other words, there shouldn't be any gift that hang both on the gift chosen by Chloe and on the gift chosen by Vladik. From all of the possible variants they will choose such pair of prizes that the sum of pleasantness of all the gifts that they will take after cutting the ropes is as large as possible.

Print the maximum sum of pleasantness that Vladik and Chloe can get. If it is impossible for them to choose the gifts without fighting, print Impossible.

Input

The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of gifts.

The next line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the pleasantness of the gifts.

The next (n - 1) lines contain two numbers each. The i-th of these lines contains integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the description of the tree's edges. It means that gifts with numbers ui and vi are connected to each other with a rope. The gifts' ids in the description of the ropes can be given in arbirtary order: vi hangs on ui or ui hangs on vi.

It is guaranteed that all the gifts hang on the first gift, possibly with a sequence of ropes and another gifts.

Output

If it is possible for Chloe and Vladik to choose prizes without fighting, print single integer — the maximum possible sum of pleasantness they can get together.

Otherwise print Impossible.

Examples
Input
8
0 5 -1 4 3 2 6 5
1 2
2 4
2 5
1 3
3 6
6 7
6 8
Output
25
Input
4
1 -5 1 1
1 2
1 4
2 3
Output
2
Input
1
-1
Output
Impossible

求两个点的的不相交的最大子树的权值和

树形dp  dp[i]  表示以该点为i节点的子树当中权值最大的

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<string.h>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<cmath>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const double PI=acos(-1.0);
const double eps=0.0000000001;
const ll INF=1e10;
const int N=+;
const ll mod=;
int head[N];
ll dp[N];
int tot;
ll a[N];
int sum[N];
ll ans;
struct node{
int to,next;
}edge[N<<];
void init(){
memset(head,-,sizeof(head));
for(int i=;i<N;i++){
dp[i]=-INF;
}
tot=;
}
void add(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
edge[tot].to=u;
edge[tot].next=head[v];
head[v]=tot++;
}
void DFS(int x,int fa){
for(int i=head[x];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa)continue;
DFS(v,x);
a[x]=a[x]+a[v];
if(dp[x]>-INF)ans=max(ans,dp[x]+dp[v]);
dp[x]=max(dp[x],dp[v]);
}
dp[x]=max(dp[x],a[x]);
}
int main(){
int n;
init();
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%I64d",&a[i]);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
ans=-INF;
DFS(,);
if(ans==-INF){
cout<<"Impossible"<<endl;
return ;
}
cout<<ans<<endl;
}

CodeForces - 743D Chloe and pleasant prizes的更多相关文章

  1. Codeforces 743D Chloe and pleasant prizes(树型DP)

                                                                D. Chloe and pleasant prizes             ...

  2. codeforces 743D. Chloe and pleasant prizes(树形dp)

    题目链接:http://codeforces.com/contest/743/problem/D 大致思路挺简单的就是找到一个父节点然后再找到其两个字节点总值的最大值. 可以设一个dp[x]表示x节点 ...

  3. Codeforces Round #384 (Div. 2)D - Chloe and pleasant prizes 树形dp

    D - Chloe and pleasant prizes 链接 http://codeforces.com/contest/743/problem/D 题面 Generous sponsors of ...

  4. coderforces #384 D Chloe and pleasant prizes(DP)

    Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  5. Chloe and pleasant prizes

    Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  6. D. Chloe and pleasant prizes

    D. Chloe and pleasant prizes time limit per test 2 seconds memory limit per test 256 megabytes input ...

  7. 【27.85%】【codeforces 743D】Chloe and pleasant prizes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. Codeforces 743D:Chloe and pleasant prizes(树形DP)

    http://codeforces.com/problemset/problem/743/D 题意:求最大两个的不相交子树的点权和,如果没有两个不相交子树,那么输出Impossible. 思路:之前好 ...

  9. [Codeforces743D][luogu CF743D]Chloe and pleasant prizes[树状DP入门][毒瘤数据]

    这个题的数据真的很毒瘤,身为一个交了8遍的蒟蒻的呐喊(嘤嘤嘤) 个人认为作为一个树状DP的入门题十分合适,同时建议做完这个题之后再去做一下这个题 选课 同时在这里挂一个选取节点型树形DP的状态转移方程 ...

随机推荐

  1. Windows系统文件名的最大长度

    1.文件名的最大长度 Windows 通常限定文件名最多包含 260 个字符.但实际的文件名必须少于这一数值,因为完整路径(如 C:\Program Files\filename.txt)都包含在此字 ...

  2. 移动web——bootstrap响应式工具

    基本介绍 1.利用媒体查询功能并使用这些工具类可以方便的针对不同设备展示或隐藏页面内容. 基本使用 <!DOCTYPE html> <html lang="zh-CN&qu ...

  3. JS——祝愿墙

    注意事项: 1.for循环的下一层注册了事件的话,事件函数中关于变量i的节点元素是不允许出现的,因为在函数加载的时候,只会加载函数名,不会加载函数体,外层for循环会走完一边,变量i一直会停留在最后一 ...

  4. JS——预解析

    1.排查语法错误 <script> console.log(1; </script> 2.变量提升和函数整体提升 <script> console.log(n1); ...

  5. JS——math

    random() 方法可返回介于 0 ~ 1 之间的一个随机数. Math.random() 0.0 ~ 1.0 之间的一个伪随机数,但是不包括0和1.

  6. JAVA中EXTENDS 与 IMPLEMENT 区别

    简单说: 1.extends是继承父类,只要那个类不是声明为final或者那个类定义为abstract的就能继承,2.JAVA中不支持多重继承,但是可以用接口来实现,这样就要用到implements, ...

  7. Address space layout randomization

    Address space layout randomization (ASLR) is a computer security technique involved in preventing ex ...

  8. Java多线程学习笔记(一)——多线程实现和安全问题

    1. 线程.进程.多线程: 进程是正在执行的程序,线程是进程中的代码执行,多线程就是在一个进程中有多个线程同时执行不同的任务,就像QQ,既可以开视频,又可以同时打字聊天. 2.线程的特点: 1.运行任 ...

  9. centos7 安装 PostgreSql

    确定你是管理员,然后运行命令: yum -y install postgresql-server postgresql-contrib 初始化数据库 postgresql-setup initdb 启 ...

  10. CAD导出黑白色的pdf(com接口)

    主要用到函数说明: IMxDrawModifyTheColor 接口 用来修改图面所有对象的颜色,把它的颜色都修改成一个指定的值. IMxDrawModifyTheColor::Do 修改颜色,详细说 ...