Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.

Example 1:

Input: s1 = "sea", s2 = "eat"

Output: 231

Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.

Deleting "t" from "eat" adds 116 to the sum.

At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.

Example 2:

Input: s1 = "delete", s2 = "leet"

Output: 403

Explanation: Deleting "dee" from "delete" to turn the string into "let",

adds 100[d]+101[e]+101[e] to the sum. Deleting "e" from "leet" adds 101[e] to the sum.

At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.

If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.

Note:

  • 0 < s1.length, s2.length <= 1000.
  • All elements of each string will have an ASCII value in [97, 122].

This is clearly a DP problem.

dp[i][j] is the cost for s1.substr(0,i) and s2.substr(0, j). Note s1[i], s2[j] not included in the substring.

Base case: dp[0][0] = 0
target: dp[m][n] if s1[i-1] = s2[j-1] // no deletion
dp[i][j] = dp[i-1][j-1];
else // delete either s1[i-1] or s2[j-1]
dp[i][j] = min(dp[i-1][j]+s1[i-1], dp[i][j-1]+s2[j-1]);

We can use a 2D vector, or an optimized O(n) extra space. See below. The run time is O(mn).

class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int m = s1.size(), n = s2.size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for (int j = 1; j <= n; j++)
dp[0][j] = dp[0][j-1]+s2[j-1];
for (int i = 1; i <= m; i++) {
dp[i][0] = dp[i-1][0]+s1[i-1];
for (int j = 1; j <= n; j++) {
if (s1[i-1] == s2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j]+s1[i-1], dp[i][j-1]+s2[j-1]);
}
}
return dp[m][n];
}
};

Optimized O(n) extra space

class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int m = s1.size(), n = s2.size();
vector<int> dp(n+1, 0);
for (int j = 1; j <= n; j++)
dp[j] = dp[j-1]+s2[j-1];
for (int i = 1; i <= m; i++) {
int t1 = dp[0];
dp[0] += s1[i-1];
for (int j = 1; j <= n; j++) {
int t2 = dp[j];
dp[j] = s1[i-1] == s2[j-1]? t1:min(dp[j]+s1[i-1], dp[j-1]+s2[j-1]);
t1 = t2;
}
}
return dp[n];
}
};

LeetCode 712. Minimum ASCII Delete Sum for Two Strings的更多相关文章

  1. LN : leetcode 712 Minimum ASCII Delete Sum for Two Strings

    lc 712 Minimum ASCII Delete Sum for Two Strings 712 Minimum ASCII Delete Sum for Two Strings Given t ...

  2. [LeetCode] 712. Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  3. LC 712. Minimum ASCII Delete Sum for Two Strings

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  4. 【LeetCode】712. Minimum ASCII Delete Sum for Two Strings 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  5. 【leetcode】712. Minimum ASCII Delete Sum for Two Strings

    题目如下: 解题思路:本题和[leetcode]583. Delete Operation for Two Strings 类似,区别在于word1[i] != word2[j]的时候,是删除word ...

  6. 712. Minimum ASCII Delete Sum for Two Strings

    题目: Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings eq ...

  7. Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)

    Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...

  8. [LeetCode] Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  9. [Swift]LeetCode712. 两个字符串的最小ASCII删除和 | Minimum ASCII Delete Sum for Two Strings

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

随机推荐

  1. 【POJ 2559】 Largest Rectangle in a Histogram

    [题目链接] http://poj.org/problem?id=2559 [算法] 单调栈 [代码] #include <algorithm> #include <bitset&g ...

  2. openstack 杂记 备忘002

  3. 49.Ext.form.TextField()基本用法

    转自:https://blog.csdn.net/toudoulin/article/details/6719163 var textfieldName = new Ext.form.TextFiel ...

  4. 数据库异常 :java.sql.SQLException: Access denied for user 'root'@'localhost' (using password: YES)

    最近在新项目中突然出现了  java.sql.SQLException: Access denied for user 'root'@'localhost' (using password: YES) ...

  5. codevs1669 运输装备(背包dp)

    1669 运输装备  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 德国放松对英国的进攻后,把矛头指向了东北——苏联 ...

  6. [App Store Connect帮助]三、管理 App 和版本(2.7)输入 App 信息:添加 iMessage 信息版 App 的 App 信息

    您可以使用 Messages framework(Messages 框架)来创建贴纸包或 iMessage 信息版 App(可在 iMessage App Store 中获取).可作为独立 App,也 ...

  7. [Swift通天遁地]六、智能布局-(7)通过Group(组)命令实现对多个视图的统一约束

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  8. Kafka详解与总结(三)

    Kafka分片存储机制 几个kafka重要概念: Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群. Topic:一类消息,例如pa ...

  9. android ListView,GridView 设置某一项显示位置

    在项目中有时会用到,当使用 listview  想让它显示某一项,当它又不在前面的位置,可以 使用 //让某一项显示出来(否则可能不在当前) listview.setSelection(positio ...

  10. RabbitMQ~一些术语和最消息的生产

    学习一种技术需要先了解它,而想要学好一种技术,需要更多的了解它的组成,原理和实现机制! RabbitMQ安装介绍 RabbitMQ是由erlang语言开发的,所以必须先有安装erlang,类似java ...