Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.

Example 1:

Input: s1 = "sea", s2 = "eat"

Output: 231

Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.

Deleting "t" from "eat" adds 116 to the sum.

At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.

Example 2:

Input: s1 = "delete", s2 = "leet"

Output: 403

Explanation: Deleting "dee" from "delete" to turn the string into "let",

adds 100[d]+101[e]+101[e] to the sum. Deleting "e" from "leet" adds 101[e] to the sum.

At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.

If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.

Note:

  • 0 < s1.length, s2.length <= 1000.
  • All elements of each string will have an ASCII value in [97, 122].

This is clearly a DP problem.

dp[i][j] is the cost for s1.substr(0,i) and s2.substr(0, j). Note s1[i], s2[j] not included in the substring.

Base case: dp[0][0] = 0
target: dp[m][n] if s1[i-1] = s2[j-1] // no deletion
dp[i][j] = dp[i-1][j-1];
else // delete either s1[i-1] or s2[j-1]
dp[i][j] = min(dp[i-1][j]+s1[i-1], dp[i][j-1]+s2[j-1]);

We can use a 2D vector, or an optimized O(n) extra space. See below. The run time is O(mn).

class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int m = s1.size(), n = s2.size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for (int j = 1; j <= n; j++)
dp[0][j] = dp[0][j-1]+s2[j-1];
for (int i = 1; i <= m; i++) {
dp[i][0] = dp[i-1][0]+s1[i-1];
for (int j = 1; j <= n; j++) {
if (s1[i-1] == s2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j]+s1[i-1], dp[i][j-1]+s2[j-1]);
}
}
return dp[m][n];
}
};

Optimized O(n) extra space

class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int m = s1.size(), n = s2.size();
vector<int> dp(n+1, 0);
for (int j = 1; j <= n; j++)
dp[j] = dp[j-1]+s2[j-1];
for (int i = 1; i <= m; i++) {
int t1 = dp[0];
dp[0] += s1[i-1];
for (int j = 1; j <= n; j++) {
int t2 = dp[j];
dp[j] = s1[i-1] == s2[j-1]? t1:min(dp[j]+s1[i-1], dp[j-1]+s2[j-1]);
t1 = t2;
}
}
return dp[n];
}
};

LeetCode 712. Minimum ASCII Delete Sum for Two Strings的更多相关文章

  1. LN : leetcode 712 Minimum ASCII Delete Sum for Two Strings

    lc 712 Minimum ASCII Delete Sum for Two Strings 712 Minimum ASCII Delete Sum for Two Strings Given t ...

  2. [LeetCode] 712. Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  3. LC 712. Minimum ASCII Delete Sum for Two Strings

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  4. 【LeetCode】712. Minimum ASCII Delete Sum for Two Strings 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  5. 【leetcode】712. Minimum ASCII Delete Sum for Two Strings

    题目如下: 解题思路:本题和[leetcode]583. Delete Operation for Two Strings 类似,区别在于word1[i] != word2[j]的时候,是删除word ...

  6. 712. Minimum ASCII Delete Sum for Two Strings

    题目: Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings eq ...

  7. Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)

    Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...

  8. [LeetCode] Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  9. [Swift]LeetCode712. 两个字符串的最小ASCII删除和 | Minimum ASCII Delete Sum for Two Strings

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

随机推荐

  1. TGraphicControl和TCustomControl自绘过程的理论解释

    TGraphicControl = class(TControl) // 这个类实在是简单,因为所有事情都已经委托给它的父Win控件了,只要管自己即可 private FCanvas: TCanvas ...

  2. Office 修改语言

  3. WPF-使用面板控制内容布局,比较Canvas,WrapPanel,StackPanel,Grid,ScrollViewer

    WPF-使用面板控制内容布局,比较Canvas,WrapPanel,StackPanel,Grid,ScrollViewer 分类: WPF2012-04-24 09:59 660人阅读 评论(0)  ...

  4. JAVA基础(多线程Thread和Runnable的使用区别(转载)

    转自:http://jinguo.iteye.com/blog/286772 Runnable是Thread的接口,在大多数情况下“推荐用接口的方式”生成线程,因为接口可以实现多继承,况且Runnab ...

  5. jsp简单学习总结

    以下均为jsp页面 1:<jsp:include page="index.jsp"/>相当于嵌入一个页面.还有一种是<frame src="main_l ...

  6. ural 1009. K-based Numbers(简单dp)

    http://acm.timus.ru/problem.aspx?space=1&num=1009 题意:将一个n位数转化为合法的K进制数,有多少种情况.合法的K进制数即不含前导0,且任意两个 ...

  7. async 函数-----------------解决异步操作隧道的亮光

    之前也学过,只是没有学好,公司现在用的都是async函数 , 所以决定把它弄懂.最近看了看阮一峰的博客,做下记录. 异步I/O不就是读取一个文件吗,干嘛要搞得这么复杂?异步编程的最高境界,就是根本不用 ...

  8. Akka源码分析-Remote-Actor创建

    在之前的博客中,我们分析过local模式下Actor的创建过程,最终还是调用了provider的actorOf的函数创建了Actor,在remote模式下provider就是RemoteActorRe ...

  9. define与typedef的区别

    define: 发生在预处理阶段,也就是编译之前,仅仅文本替换,不做任何的类型检查 没有作用域的限制 typedef: 多用于简化复杂的类型声明,比如函数指针声明:typedef bool (*fun ...

  10. Elasticsearch之CURL命令的GET

    这是个查询命令. 前期博客 Elasticsearch之CURL命令的PUT和POST对比 1. 以上是根据员工id查询. 即在任意的查询字符串中添加pretty参数,es可以得到易于我们识别的jso ...