莫烦大大TensorFlow学习笔记(9)----可视化
一、Matplotlib【结果可视化】
#import os
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #添加一个神经层,定义添加神经层的函数
def add_layer(inputs, in_size, out_size, activation_function = None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs,Weights) + biases #Wx_plus_b代表W*x+b #如果没有激励函数,即为线性关系,那么直接输出,不需要激励函数(非线性函数)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b) #把这个值传进去
return outputs
x_data = np.linspace(-1, 1, 300, dtype = np.float32)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu) #预测值;定义输出层,输入为l1=前一层隐藏层的输出,输入的层数为10=隐藏层神经元的个数,输出的层数为1=输出一般只有1层
prediction = add_layer(l1, 10, 1, activation_function = None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices = [1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #机器要学习的内容,使用优化器提升准确率,学习率为0.1<1,表示以0.1的效率来最小化误差loss init = tf.global_variables_initializer() sess = tf.Session() #定义Session,并使用Session来初始化步骤
sess.run(init) #绘制真实数据
fig = plt.figure() #生成一个画框/画布
ax = fig.add_subplot(1, 1, 1) #将画框分为1行1列,并将图 画在画框的第1个位置
ax.scatter(x_data, y_data) #画散点图
plt.ion() #交互绘制功能,用于连续显示;本次运行时请注释掉这条语句,全局运行不需要注释掉
plt.show() #显示所绘制的图形,但是他只显示当前运行时的图像,不会一直显示多次;在实际运行当中,注释掉上面两条代码,程序才会正常运行,暂时不知道为什么。。。
for i in range(1000): #训练1000次
sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) #给placeholder喂数据,把x_data赋值给xs
if i % 50 == 0: #每50步输出一次机器学习的误差
#print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))
#可视化结果与改进
try:
ax.lines.remove(lines[0]) #抹去前一条绘制的曲线,在这里我们要先抹去再绘制,防止第一次运行时报错,我们使用try语句
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs:x_data})
#绘制预测数据
lines = ax.plot(x_data, prediction_value,'r-',lw=5) #x轴数据,y轴数据,红色的线,线的宽度为5
plt.pause(0.1) #绘制曲线的时间间隔为0.1秒


二、Tensorboard:【模型可视化】
Tensorboard 可视化好帮手 1
作者: 灰猫 编辑: 莫烦 2016-11-03
学习资料:
注意: 本节内容会用到浏览器, 而且与 tensorboard 兼容的浏览器是 “Google Chrome”. 使用其他的浏览器不保证所有内容都能正常显示.
学会用 Tensorflow 自带的 tensorboard 去可视化我们所建造出来的神经网络是一个很好的学习理解方式. 用最直观的流程图告诉你你的神经网络是长怎样,有助于你发现编程中间的问题和疑问.
效果
好,我们开始吧。
这次我们会介绍如何可视化神经网络。因为很多时候我们都是做好了一个神经网络,但是没有一个图像可以展示给大家看。这一节会介绍一个TensorFlow的可视化工具 — tensorboard :) 通过使用这个工具我们可以很直观的看到整个神经网络的结构、框架。 以前几节的代码为例:相关代码 通过tensorflow的工具大致可以看到,今天要显示的神经网络差不多是这样子的
同时我们也可以展开看每个layer中的一些具体的结构:
好,通过阅读代码和之前的图片我们大概知道了此处是有一个输入层(inputs),一个隐含层(layer),还有一个输出层(output) 现在可以看看如何进行可视化.
搭建图纸
首先从 Input 开始:
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
对于input我们进行如下修改: 首先,可以为xs指定名称为x_in:
xs= tf.placeholder(tf.float32, [None, 1],name='x_in')
然后再次对ys指定名称y_in:
ys= tf.placeholder(tf.loat32, [None, 1],name='y_in')
这里指定的名称将来会在可视化的图层inputs中显示出来
使用with tf.name_scope('inputs')可以将xs和ys包含进来,形成一个大的图层,图层的名字就是with tf.name_scope()方法里的参数。
with tf.name_scope('inputs'):
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
接下来开始编辑layer , 请看编辑前的程序片段 :
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
return outputs
这里的名字应该叫layer, 下面是编辑后的:
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
with tf.name_scope('layer'):
Weights= tf.Variable(tf.random_normal([in_size, out_size]))
# and so on...
在定义完大的框架layer之后,同时也需要定义每一个’框架‘里面的小部件:(Weights biases 和 activation function): 现在现对 Weights 定义: 定义的方法同上,可以使用tf.name.scope()方法,同时也可以在Weights中指定名称W。 即为:
def add_layer(inputs, in_size, out_size, activation_function=None):
#define layer name
with tf.name_scope('layer'):
#define weights name
with tf.name_scope('weights'):
Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
#and so on......
接着继续定义biases , 定义方式同上。
def add_layer(inputs, in_size, out_size, activation_function=None):
#define layer name
with tf.name_scope('layer'):
#define weights name
with tf.name_scope('weights')
Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
# define biase
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
# and so on....
activation_function 的话,可以暂时忽略。因为当你自己选择用 tensorflow 中的激励函数(activation function)的时候,tensorflow会默认添加名称。 最终,layer形式如下:
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights = tf.Variable(
tf.random_normal([in_size, out_size]),
name='W')
with tf.name_scope('biases'):
biases = tf.Variable(
tf.zeros([1, out_size]) + 0.1,
name='b')
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.add(
tf.matmul(inputs, Weights),
biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
return outputs
效果如下:(有没有看见刚才定义layer里面的“内部构件”呢?)
最后编辑loss部分:将with tf.name_scope()添加在loss上方,并为它起名为loss
# the error between prediciton and real data
with tf.name_scope('loss'):
loss = tf.reduce_mean(
tf.reduce_sum(
tf.square(ys - prediction),
eduction_indices=[1]
))
这句话就是“绘制” loss了, 如下:
使用with tf.name_scope()再次对train_step部分进行编辑,如下:
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
我们需要使用 tf.summary.FileWriter() (tf.train.SummaryWriter() 这种方式已经在 tf >= 0.12 版本中摒弃) 将上面‘绘画’出的图保存到一个目录中,以方便后期在浏览器中可以浏览。 这个方法中的第二个参数需要使用sess.graph , 因此我们需要把这句话放在获取session的后面。 这里的graph是将前面定义的框架信息收集起来,然后放在logs/目录下面。
sess = tf.Session() # get session
# tf.train.SummaryWriter soon be deprecated, use following
writer = tf.summary.FileWriter("logs/", sess.graph)
最后在你的terminal(终端)中 ,使用以下命令
tensorboard --logdir logs
同时将终端中输出的网址复制到浏览器中,便可以看到之前定义的视图框架了。
tensorboard 还有很多其他的参数,希望大家可以多多了解, 可以使用 tensorboard --help 查看tensorboard的详细参数 最终的全部代码在这里
可能会遇到的问题
(1) 而且与 tensorboard 兼容的浏览器是 “Google Chrome”. 使用其他的浏览器不保证所有内容都能正常显示.
(2) 同时注意, 如果使用 http://0.0.0.0:6006 网址打不开的朋友们, 请使用 http://localhost:6006, 大多数朋友都是这个问题.
(3) 请确保你的 tensorboard 指令是在你的 logs 文件根目录执行的. 如果在其他目录下, 比如 Desktop 等, 可能不会成功看到图. 比如在下面这个目录, 你要 cd 到 project 这个地方执行 /project > tensorboard --logdir logs
- project
- logs
model.py
env.py
(4) 讨论区的朋友使用 anaconda 下的 python3.5 的虚拟环境, 如果你输入 tensorboard 的指令, 出现报错: "tensorboard" is not recognized as an internal or external command...
解决方法的关键就是需要激活TensorFlow. 管理员模式打开 Anaconda Prompt, 输入 activate tensorflow, 接着按照上面的流程执行 tensorboard 指令.
莫烦大大TensorFlow学习笔记(9)----可视化的更多相关文章
- 莫烦大大TensorFlow学习笔记(8)----优化器
一.TensorFlow中的优化器 tf.train.GradientDescentOptimizer:梯度下降算法 tf.train.AdadeltaOptimizer tf.train.Adagr ...
- 莫烦python教程学习笔记——总结篇
一.机器学习算法分类: 监督学习:提供数据和数据分类标签.--分类.回归 非监督学习:只提供数据,不提供标签. 半监督学习 强化学习:尝试各种手段,自己去适应环境和规则.总结经验利用反馈,不断提高算法 ...
- 莫烦python教程学习笔记——保存模型、加载模型的两种方法
# View more python tutorials on my Youtube and Youku channel!!! # Youtube video tutorial: https://ww ...
- 莫烦python教程学习笔记——validation_curve用于调参
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——learn_curve曲线用于过拟合问题
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——利用交叉验证计算模型得分、选择模型参数
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——数据预处理之normalization
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
- 莫烦python教程学习笔记——线性回归模型的属性
#调用查看线性回归的几个属性 # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # ...
- 莫烦python教程学习笔记——使用波士顿数据集、生成用于回归的数据集
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...
随机推荐
- 0709关于mysql优化思路【何登成】
转自 http://isky000.com/database/mysql-performance-tuning-sql 优化目标 减少 IO 次数IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所 ...
- MYSQL 技术内幕 博客学习
http://blog.csdn.net/CCyutaotao/article/category/6147849/3
- ZOJ2724_Windows Message Queue(STL/优先队列)
解题报告 题意: 看输入输出就非常明确. 思路: 优先队列. #include <algorithm> #include <iostream> #include <cst ...
- 实战Java内存泄漏问题分析 -- hazelcast2.0.3使用时内存泄漏 -- 2
hazelcast 提供了3中方法调用startCleanup: 第一种是在ConcuurentMapManager的构造函数中,通过调用node的executorManager中的Scheduled ...
- C++静态变量本身可否是一个实例对象
一般书上总是用int来举例,那个太简单.如果静态变量本身可否是一个实例对象呢?应该是可以,但是这样涉及到它的构造函数以及它内部的静态变量如何初始化两个问题,换而言之,这个静态变量本身应该如何初始化?这 ...
- TCP三次握手及关闭时的2MSL分析
TCP/IP三次握手四次挥手,是非常重要的,这个链接与关闭过程也是非常easy的.但为什么是三次握手?以及为什么要等待2MSL的状态?大部分人或许听到这个问题就蒙了.这篇博客就综合<TCP/IP ...
- Ubuntu Tomcat Service
只需要将%TOMCAT_HOME%/bin/catalina.sh文件拷贝到/etc/init.d/文件夹下,稍作编辑,然后注册成系统服务,是否设置自启动均可. 1. 编辑catalina.sh文件c ...
- DNS同时占用UDP和TCP端口53——传输数据超过512时候用tcp,DNS服务器可以配置仅支持UDP查询包
DNS同时占用UDP和TCP端口53是公认的,这种单个应用协议同时使用两种传输协议的情况在TCP/IP栈也算是个另类.但很少有人知道DNS分别在什么情况下使用这两种协议. 先简单介绍下TCP与UDP. ...
- 【JSOI 2008】 球形空间产生器
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1013 [算法] 高斯消元 [代码] #include<bits/stdc++. ...
- HP Z240组建磁盘阵列RAID1