这道题感觉非常的秀

因为结果会很大,所以就质因数分解分开来算

非常的巧妙!

#include<cstdio>
#include<vector>
#include<cstring>
#include<cmath>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 11234;
bool is_prime[MAXN];
vector<int> prime;
int e[MAXN]; void init() //初始化质数
{
memset(is_prime, true, sizeof(is_prime));
is_prime[0] = is_prime[1] = false; REP(i, 2, MAXN)
{
if(is_prime[i]) prime.push_back(i);
REP(j, 0, prime.size())
{
if(i * prime[j] > MAXN) break;
is_prime[i * prime[j]] = false;
if(i % prime[j] == 0) break;
}
}
} void add_integer(int n, int d) //表示把n的d次方质因数分解,结果存到数组e里面
{ //例如d = 1表示乘以n,d = -1表示除以n
REP(i, 0, prime.size()) //需要预处理好素数
{
while(n % prime[i] == 0) //注意这里是while
{
n /= prime[i];
e[i] += d; //e[i]表示第i个素数的幂
}
if(n == 1) break; //节省时间
}
} void add(int n, int d) { REP(i, 2, n + 1) add_integer(i, d); } int main()
{
init();
int p, q, r, s; while(~scanf("%d%d%d%d", &p, &q, &r, &s))
{
memset(e, 0, sizeof(e));
add(p, 1); add(q, -1); add(p-q, -1);
add(r, -1); add(s, 1); add(r-s, 1); double ans = 1;
REP(i, 0, prime.size()) ans *= pow(prime[i], e[i]);
printf("%.5lf\n", ans);
} return 0;
}

紫书 例题 10-3 UVa 10375 (唯一分解定理)的更多相关文章

  1. UVa 10375 (唯一分解定理) Choose and divide

    题意: 求组合数C(p, q) / C(r, s)结果保留5为小数. 分析: 先用筛法求出10000以内的质数,然后计算每个素数对应的指数,最后再根据指数计算答案. #include <cstd ...

  2. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)

    这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...

  3. 紫书 例题 9-5 UVa 12563 ( 01背包变形)

    总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...

  4. 紫书 例题8-3 UVa 1152(中途相遇法)

    这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...

  5. 紫书 例题8-12 UVa 12627 (找规律 + 递归)

    紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...

  6. 紫书 例题8-4 UVa 11134(问题分解 + 贪心)

     这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...

  7. 紫书 例题8-17 UVa 1609 (构造法)(详细注释)

    这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...

  8. UVa 1635 (唯一分解定理) Irrelevant Elements

    经过紫书的分析,已经将问题转化为求组合数C(n-1, 0)~C(n-1, n-1)中能够被m整除的个数,并输出编号(这n个数的编号从1开始) 首先将m分解质因数,然后记录下每个质因子对应的指数. 由组 ...

  9. 紫书 例题 10-4 UVa 10791(唯一分解定理)

    首先分解,然后可以发现同一个因子ai不能存在于两个以上的数中 因为求的是最小公倍数,如果有的话就可以约掉 所以数字必然由ai的pi次方的乘积组成,那么显然,在 a最小为2,而b大于2的情况下a*b&g ...

随机推荐

  1. codecademy练习记录--Learn Python(70%)

    ############################################################################### codecademy python 5. ...

  2. Thinking in file encoding and decoding?

    > General file encoding ways We most know, computer stores files with binary coding like abc\xe4\ ...

  3. 洛谷 P1338 末日的传说 (字典序 + 逆序对)

    这道题需要对排列有深刻的理解和认识 给出逆序对的个数,求改逆序对个数的字典序最小的排列 那么既然是最小,那么一开始一段肯定是升序,一直到某个数后才开始改变 即1 2 3-- n-1 n a b c d ...

  4. Docker决战到底(三) Rancher2.x的安装与使用 - 简书

    原文:Docker决战到底(三) Rancher2.x的安装与使用 - 简书   image.png 当越来越多的容器化应用被部署,一个可以管理编排这些容器的工具此时就显得尤为重要了.目前容器编排领域 ...

  5. 优化VR体验的7个建议

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接: http://blog.csdn.net/cartzhang/article/details/50392607 作者:ca ...

  6. HTTP请求和响应模式(B/S)(2)

    B/S          及浏览器/客服端模式 根据发送的状态码不同,显示response的状态不同

  7. ajax 获取 json 数据乱码

    打开json文本把json文件另存为 'utf-8' 编码格式的文件.....

  8. ASP.NET-RedirectToAction只能使用get方法

    两个同名Action共同使用return View() return RedirectToAction("test", new { ls = list.Fct_OrderList ...

  9. java io包File类

    1.java io包File类, Java.io.File(File用于管理文件或目录: 所属套件:java.io)1)File对象,你只需在代码层次创建File对象,而不必关心计算机上真正是否存在对 ...

  10. 【剑指offer】Q31:连续子数组的组大和

    简短的分析见:http://blog.csdn.net/shiquxinkong/article/details/17934747 def FindGreatestSumOfSubArray(arra ...