Architecture of a Highly Scalable NIO-Based Server
一。 thread-per-connection
The thread-per-connection approach uses an exclusive worker thread for each connection. Within the handling loop, a worker thread
waits for new incoming data, processes the request, returns the response data, and calls the blocking socket's read method
public class Server {
private ExecutorService executors = Executors.newFixedThreadPool(10);
private boolean isRunning = true;
public static void main(String... args) throws ... {
new Server().launch(Integer.parseInt(args[0]));
}
public void launch(int port) throws ... {
ServerSocket sso = new ServerSocket(port);
while (isRunning) {
Socket s = sso.accept();
executors.execute(new Worker(s));
}
}
private class Worker implements Runnable {
private LineNumberReader in = null;
Worker(Socket s) throws ... {
in = new LineNumberReader(new InputStreamReader(...));
out = ...
}
public void run() {
while (isRunning) {
try {
// blocking read of a request (line)
String request = in.readLine();
// processing the request
String response = ...
// return the response
out.write(resonse);
out.flush();
} catch (Exception e ) {
...
}
}
in.close();
...
}
}
}
Because each connection has an associated thread waiting on the server side, very good response times can be achieved. However,
higher loads require a higher number of running, concurrent threads, which limits scalability. In particular, long-living connections
like persistent HTTP connections lead to a lot of concurrent worker threads, which tend to waste their time waiting concurrent
threads can waste a great deal of stack space. Note, for example, that the default Java thread stack size for Solaris is 512 KB.
二。thread-on-event
If a readiness event occurs, an event handler will be notified to perform the appropriate processing within dedicated worker threads.

To participate in the event architecture, the connection's Channel has to be registered on a Selector. This will be done by calling
the register method. Although this method is part of the SocketChannel, the channel will be registered on the Selector, not the
other way around.
SocketChannel channel = serverChannel.accept();
channel.configureBlocking(false); // register the connection
SelectionKey sk = channel.register(selector, SelectionKey.OP_READ);
To detect new events, the Selector provides the capability to ask the registered channels for their readiness events. By calling the select
method, the Selector collects the readiness events of the registered channels. This method call blocks until at least one event has been
occurred. In this case, the method returns the number of connections that have become ready for I/O operations since the last select call.
The selected connections can be retrieved by calling the Selector's selectedKey method. This method returns a set of SelectionKey objects,
which holds the IO event status and the reference of the connection's Channel.
A Selector is held by the Dispatcher. This is a single-threaded active class that surrounds the Selector. The Dispatcher is responsible to
retrieve the events and to dispatch the handling of the consumed events to the EventHandler.
Within the dispatch loop, the Dispatcher calls the Selector's select method to wait for new events. If at least one event has been occurred,
the method call returns and the associated channel for each event can be acquired by calling the selectedKeys method.
while (isRunning) {
// blocking call, to wait for new readiness events
int eventCount = selector.select();
// get the events
Iterator it = selector.selectedKeys().iterator();
while (it.hasNext()) {
SelectionKey key = it.next();
it.remove();
// readable event?
if (key.isValid() && key.isReadable()) {
eventHandler.onReadableEvent(key.channel());
}
// writable event?
if (key.isValid() && key.isWritable()) {
key.interestOps(SelectionKey.OP_READ); // reset to read only
eventHandler.onWriteableEvent(key.channel());
}
...
}
...
}
Because worker threads are not forced to waste time by waiting for new requests to open a connection, the scalability and
throughput of this approach is conceptually only limited by system resources like CPU or memory. That said, the response
times wouldn't be as good as for the thread-per-connection approach, because of the required thread switches and
synchronization. The challenge of the event-driven approach is therefore to minimize synchronizations and optimize thread
management, so that this overhead will be negligible.
三。构成

1.Acceptor
The Acceptor is a single threaded active class. Because it is only responsible for handling the very short-running
client connection request, it is often sufficient to implement the Acceptor using the blocking I/O model.
class Acceptor implements Runnable {
...
void init() {
ServerSocketChannel serverChannel = ServerSocketChannel.open();
serverChannel.configureBlocking(true);
serverChannel.socket().bind(new InetSocketAddress(serverPort));
}
public void run() {
while (isRunning) {
try {
SocketChannel channel = serverChannel.accept();
Connection con = new Connection(channel, appHandler);
dispatcherPool.nextDispatcher().register(con);
} catch (...) {
...
}
}
}
}
2.Dispatcher
Because the scalability of a single Dispatcher is limited, often a small pool of Dispatchers will be used. One reason for this limitation
is the operating-system-specific implementation of the Selector.
Most popular operating systems map a SocketChannel to a file handle in a one-to-one relationship. Depending on the concrete system,
the maximum number of file handles per Selector is limited in adifferent way.
The Selector manages the registered channels internally by using key sets. This means that by registering a channel, an associated
SelectionKey will be created and be added to the Selector's registered key set. At the same time, the concurrent dispatcher thread
could call the Selector's select method, which also accesses the key set.
Because the key sets are not thread-safe, an unsynchronized registration in the context of the Acceptor thread can lead to deadlocks
and race conditions. This can be solved by implementing the selector guard object idiom, which allows suspending the dispatcher
thread temporarily.
class Dispatcher implements Runnable {
private Object guard = new Object();
…
void register(Connection con) {
// retrieve the guard lock and wake up the dispatcher thread
// to register the connection's channel
synchronized (guard) {
selector.wakeup();
con.getChannel().register(selector, SelectionKey.OP_READ, con);
}
// notify the application EventHandler about the new connection
}
void announceWriteNeed(Connection con) {
SelectionKey key = con.getChannel().keyFor(selector);
synchronized (guard) {
selector.wakeup();
key.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE);
}
}
public void run() {
while (isRunning) {
synchronized (guard) {
// suspend the dispatcher thead if guard is locked
}
int eventCount = selector.select();
Iterator it = selector.selectedKeys().iterator();
while (it.hasNext()) {
SelectionKey key = it.next();
it.remove();
// read event?
if (key.isValid() && key.isReadable()) {
Connection con = (Connection) key.attachment();
disptacherEventHandler.onReadableEvent(con);
}
// write event?
}
}
}
}
4.Dispatcher-Level EventHandler
5.Application-Level EventHandler
Architecture of a Highly Scalable NIO-Based Server的更多相关文章
- Java NIO: Non-blocking Server 非阻塞网络服务器
本文翻译自 Jakob Jenkov 的 Java NIO: Non-blocking Server ,原文地址:http://tutorials.jenkov.com/java-nio/non-bl ...
- Java NIO: Non-blocking Server
Even if you understand how the Java NIO non-blocking features work (Selector, Channel, Buffer etc.), ...
- NIO的一些相关链接
Architecture of a Highly Scalable NIO-Based Server Scalable IO in Java Tricks and Tips with NIO part ...
- 高吞吐高并发Java NIO服务的架构(NIO架构及应用之一)
高吞吐高并发Java NIO服务的架构(NIO架构及应用之一) http://maoyidao.iteye.com/blog/1149015 Java NIO成功的应用在了各种分布式.即时通信和中 ...
- 如何设计scalable 的系统 (转载)
Design a Scalable System Design a system that scales to millions of users (AWS based) Step 1: Outlin ...
- Cross-Domain Security For Data Vault
Cross-domain security for data vault is described. At least one database is accessible from a plural ...
- 可扩展的Web系统和分布式系统(Scalable Web Architecture and Distributed Systems)
Open source software has become a fundamental building block for some of the biggest websites. And a ...
- Scalable Web Architecture and Distributed Systems
转自:http://aosabook.org/en/distsys.html Scalable Web Architecture and Distributed Systems Kate Matsud ...
- 一段关于java NIO server端接受客户端socket连接;演示了关于channel,selector等组件的整合使用
public class ReactorDemo { public static void main(String[] args) throws IOException { ServerSocketC ...
随机推荐
- WPF/Silverlight HierarchicalDataTemplate 模版的使用(转)
上一篇 对Wpf/Silverlight Template 进行了总结,本篇继续上一篇,主要是介绍 HierarchicalDataTemplate 的使用方法.HierarchicalDataTem ...
- Ajax 学习之获取服务器的值
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...
- POJ3162 Walking Race(树形DP+尺取法+单调队列)
题目大概是给一棵n个结点边带权的树,记结点i到其他结点最远距离为d[i],问d数组构成的这个序列中满足其中最大值与最小值的差不超过m的连续子序列最长是多长. 各个结点到其他结点的最远距离可以用树形DP ...
- POJ1679 The Unique MST(次小生成树)
可以依次枚举MST上的各条边并删去再求最小生成树,如果结果和第一次求的一样,那就是最小生成树不唯一. 用prim算法,时间复杂度O(n^3). #include<cstdio> #incl ...
- BZOJ4373 : 算术天才⑨与等差数列
设$pre[i]$表示第$i$个数上一次出现的位置,$d[i]=abs(a[i]-a[i+1])$. 用线段树维护区间内$a$的最小值.最大值,$pre$的最大值以及$d$的$\gcd$. 对于询问$ ...
- 一些比较实用的javascript方法收集,留着有用
动态加载javascript文件 <script type="text/javascript"> //<!-- /*动态加载方法*/ function loadS ...
- TYVJ P1082 找朋友 Label:字符串
描述 童年的我们,对各种事物充满了好奇与向往.这天,小朋友们对数字产生了兴趣,并且想和数字交朋友.可是,怎么分配这些数字才能使得每个小朋友都唯一地找到一个数字朋友呢?C小朋友说:咱们按自己名字的字典序 ...
- 关于Reapter多重嵌套的详细补充
<asp:Repeater ID ="rptfour" runat ="server" OnItemDataBound="two_Bind&qu ...
- iOS开发项目之三 [ 自定义tabBarCtrl]
01 让tabBar的图片保持原样.图片渲染的处理 ctrl.tabBarItem.selectedImage = [[UIImage imageNamed:[NSString stringWithF ...
- mysql5.6 通用二进制安装
mysql5.6 通用二进制安装: #卸载原有的mysqlyum remove mysql*ls /etc/my.cnf*mv /etc/my.cnf* /tmp/ #安装依赖包yum install ...