题目描述 Description

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入描述 Input Description

输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数)

输出描述 Output Description

输出这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

样例输入 Sample Input

389 207 155 300 299 170 158 65

样例输出 Sample Output

6

2

数据范围及提示 Data Size & Hint

导弹的高度<=30000,导弹个数<=20

分析:

第一问是求最长不上升序列,通过状态转移方程:

dp[j]=1(j← 0 to 导弹个数-1)
dp[j]=max{dp[j],dp[k]+1}(high[k]>=high[j])

再看第二问,求的是最少分几个最长不上升序列。接下来要涉及到一个优美的定理(不要问为什么优美)。

Dilworth定理:对于一个偏序集,最少链划分等于最长反链长度。

Dilworth定理的对偶定理:对于一个偏序集,其最少反链划分数等于其最长链的长度。

也就是说把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度

因此第二问的状态转移方程是:

dp2[j]=1(j← 0 to 导弹个数-1)

dp2[j]=max{dp2[j],dp2[k]+1}(high[k]<=high[j])

代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int maxdaodan=+;
int dp[maxdaodan],dp2[maxdaodan],high[maxdaodan],ans=,ans2=,daodan=;
int main()
{
while(cin>>high[daodan])
{
dp[daodan]=;
dp2[daodan]=;
daodan++;
}
for(int j=; j<daodan; j++)
{
for(int k=; k<j; k++)
{
if(high[k]>=high[j])
dp[j]=max(dp[j],dp[k]+);
if(high[k]<=high[j])
dp2[j]=max(dp2[j],dp2[k]+);
}
ans=max(ans,dp[j]);
ans2=max(ans2,dp2[j]);
}
cout<<ans<<endl<<ans2<<endl;
}

  

想明白Dilworth定理的学霸们,请继续阅读:

偏序集的定义:偏序是在集合X上的二元关系≤(这只是个抽象符号,不是“小于或等于”,它满足自反性、反对称性和传递性)。即,对于X中的任意元素a,b和c,有:

(1)自反性:a≤a;

(2)反对称性:如果a≤b且b≤a,则有a=b;

(3)传递性:如果a≤b且b≤c,则a≤c 。

带有偏序关系的集合称为偏序集。

令(X,≤)是一个偏序集,对于集合中的两个元素a、b,如果有a≤b或者b≤a,则称a和b是可比的,否则a和b不可比。

在这个例子(反链)中元素Ri<=Rj是指(i<=j) and (ai>=aj)

一个反链A是X的一个子集,它的任意两个元素都不能进行比较。

一个链C是X的一个子集,它的任意两个元素都可比。

【定理】

在X中,对于元素a,如果任意元素b,都有a≤b,则称a为极小元。

定理1:令(X,≤)是一个有限偏序集,并令r是其最大链的大小。则X可以被划分成r个但不能再少的反链。

其对偶定理称为Dilworth定理:

令(X,≤)是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。

虽然这两个定理内容相似,但第一个定理证明要简单一些。此处就只证明定理1。

证明:设p为最少反链个数

(1)先证明X不能划分成小于r个反链。由于r是最大链C的大小,C中任两个元素都可比,因此C中任两个元素都不能属于同一反

链。所以p>=r。

(2)设X1=X,A1是X1中的极小元的集合。从X1中删除A1得到X2。注意到对于X2中任意元素a2,必存在X1中的元素a1,使得

a1<=a2。令A2是X2中极小元的集合,从X2中删除A2得到X3……,最终会有一个Xk非空而Xk+1为空。于是A1,A2,…,Ak就是X的

反链的划分,同时存在链a1<=a2<=…<=ak,其中ai在Ai内。由于r是最长链大小,因此r>=k。由于X被划分成了k个反链,因此

r>=k>=p。

(3)因此r=p,定理1得证。

 

【解决】

要求最少的覆盖,按照Dilworth定理

最少链划分 = 最长反链长度

所以最少系统 = 最长导弹高度上升序列长度。

【codevs1044】导弹拦截问题与Dilworth定理的更多相关文章

  1. HDU 1257 最少拦截系统(Dilworth定理+LIS)

    最少拦截系统 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. 导弹拦截与Dilworth定理

    这两天被Dilworth.链和反链搞到头昏脑胀,终于有点眉目,现在来总结一下. Dilworth定理说的是:对于一个偏序集,其最少链划分数等于其最长反链的长度. Dilworth定理的对偶定理说的是: ...

  3. 导弹拦截( 二分+dilworth定理)

    https://www.luogu.org/problemnew/show/P1020 原题 接下来是dilworth定理 https://blog.csdn.net/u011676717/artic ...

  4. 洛谷P1020 导弹拦截 题解 LIS扩展题 Dilworth定理

    题目链接:https://www.luogu.com.cn/problem/P1020 题目大意: 给你一串数,求: 这串数的最长不上升子序列的长度: 最少划分成多少个子序列是的这些子序列都是不上升子 ...

  5. codevs1044:dilworth定理

    http://www.cnblogs.com/submarine/archive/2011/08/03/2126423.html dilworth定理的介绍 题目大意:求一个序列的lds 同时找出这个 ...

  6. codevs1044 拦截导弹==洛谷 P1020 导弹拦截

    P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天 ...

  7. (转载)偏序集的Dilworth定理学习

    导弹拦截是一个经典问题:求一个序列的最长不上升子序列,以及求能最少划分成几组不上升子序列.第一问是经典动态规划,第二问直接的方法是最小路径覆盖, 但是二分图匹配的复杂度较高,我们可以将其转化成求最长上 ...

  8. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

  9. Dilworth定理

    来自网络的解释: 定理内容及其证明过程数学不好看不懂. 通俗解释: 把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度(LIS) EXAMPLE 1   HDU 1257 ...

随机推荐

  1. 在linux下安装某个硬件驱动到方法

    东西很简单,几句话就能说清除. 使用lsipc检查你需要安装到硬件,记住硬件到关键型号,去搜索引擎搜索linux下的驱动文件 对文件进行安装简单的解压后基本上是 ./configure &&a ...

  2. 2014 Super Training #8 G Grouping --Tarjan求强连通分量

    原题:ZOJ 3795 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3795 题目大意:给定一个有向图,要求把点分为k个集 ...

  3. Android的面孔_Actiyity

    一.什么是Activity? 简单的说:Activity就是布满整个窗口或者悬浮于其他窗口上的交互界面.在一个应用程序中通常由多个Activity构成,都会在Manifest.xml中指定一个主的Ac ...

  4. Junit使用GroboUtils进行多线程测试

    写过Junit单元测试的同学应该会有感觉,Junit本身是不支持普通的多线程测试的,这是因为Junit的底层实现上,是用System.exit退出用例执行的.JVM都终止了,在测试线程启动的其他线程自 ...

  5. ILMerge 简单应用

    ILMerge是合并.net的assembly的工具,最新版的支持.net 4.0的ILmerge下载: http://www.microsoft.com/downloads/details.aspx ...

  6. 记录使用gogs,drone搭建自动部署测试环境

    使用gogs,drone,docker搭建自动部署测试环境 Gogs是一个使用go语言开发的自助git服务,支持所有平台 Docker是使用go开发的开源容器引擎 Drone是一个基于容器技术的持续集 ...

  7. IP包格式

    网络层提供的服务就是在不同网段之间转发数据包. Ip包结构 1,格式(每行4byte*5) 2,版本 V4 V6 3,首部长度 20(固定)+可变长度 ,区分服务 Win2008开始:gpedit. ...

  8. ip routing&no ip routing

    ip routing--------查路由表, 如果ping的目的在RT中没有,不发出任何包(arp也不会发出)   如果RT中存在,则arp  下一跳,相当于no ip routing+配置网关 n ...

  9. H5实现拍照并上传

    <!DOCTYPE HTML><html><head>    <meta charset="UTF-8">    <meta ...

  10. NET中MSMQ的使用----附例子

    目录 一:MSMQ的一些理论上的知识 二:队列类型(Queue Type) 三:安装消息队列 四:在C#中Messagequeue class 五:MSMQ-发送消息到远程专用队列 六:例子   一. ...