题目描述 Description

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入描述 Input Description

输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数)

输出描述 Output Description

输出这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

样例输入 Sample Input

389 207 155 300 299 170 158 65

样例输出 Sample Output

6

2

数据范围及提示 Data Size & Hint

导弹的高度<=30000,导弹个数<=20

分析:

第一问是求最长不上升序列,通过状态转移方程:

dp[j]=1(j← 0 to 导弹个数-1)
dp[j]=max{dp[j],dp[k]+1}(high[k]>=high[j])

再看第二问,求的是最少分几个最长不上升序列。接下来要涉及到一个优美的定理(不要问为什么优美)。

Dilworth定理:对于一个偏序集,最少链划分等于最长反链长度。

Dilworth定理的对偶定理:对于一个偏序集,其最少反链划分数等于其最长链的长度。

也就是说把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度

因此第二问的状态转移方程是:

dp2[j]=1(j← 0 to 导弹个数-1)

dp2[j]=max{dp2[j],dp2[k]+1}(high[k]<=high[j])

代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int maxdaodan=+;
int dp[maxdaodan],dp2[maxdaodan],high[maxdaodan],ans=,ans2=,daodan=;
int main()
{
while(cin>>high[daodan])
{
dp[daodan]=;
dp2[daodan]=;
daodan++;
}
for(int j=; j<daodan; j++)
{
for(int k=; k<j; k++)
{
if(high[k]>=high[j])
dp[j]=max(dp[j],dp[k]+);
if(high[k]<=high[j])
dp2[j]=max(dp2[j],dp2[k]+);
}
ans=max(ans,dp[j]);
ans2=max(ans2,dp2[j]);
}
cout<<ans<<endl<<ans2<<endl;
}

  

想明白Dilworth定理的学霸们,请继续阅读:

偏序集的定义:偏序是在集合X上的二元关系≤(这只是个抽象符号,不是“小于或等于”,它满足自反性、反对称性和传递性)。即,对于X中的任意元素a,b和c,有:

(1)自反性:a≤a;

(2)反对称性:如果a≤b且b≤a,则有a=b;

(3)传递性:如果a≤b且b≤c,则a≤c 。

带有偏序关系的集合称为偏序集。

令(X,≤)是一个偏序集,对于集合中的两个元素a、b,如果有a≤b或者b≤a,则称a和b是可比的,否则a和b不可比。

在这个例子(反链)中元素Ri<=Rj是指(i<=j) and (ai>=aj)

一个反链A是X的一个子集,它的任意两个元素都不能进行比较。

一个链C是X的一个子集,它的任意两个元素都可比。

【定理】

在X中,对于元素a,如果任意元素b,都有a≤b,则称a为极小元。

定理1:令(X,≤)是一个有限偏序集,并令r是其最大链的大小。则X可以被划分成r个但不能再少的反链。

其对偶定理称为Dilworth定理:

令(X,≤)是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。

虽然这两个定理内容相似,但第一个定理证明要简单一些。此处就只证明定理1。

证明:设p为最少反链个数

(1)先证明X不能划分成小于r个反链。由于r是最大链C的大小,C中任两个元素都可比,因此C中任两个元素都不能属于同一反

链。所以p>=r。

(2)设X1=X,A1是X1中的极小元的集合。从X1中删除A1得到X2。注意到对于X2中任意元素a2,必存在X1中的元素a1,使得

a1<=a2。令A2是X2中极小元的集合,从X2中删除A2得到X3……,最终会有一个Xk非空而Xk+1为空。于是A1,A2,…,Ak就是X的

反链的划分,同时存在链a1<=a2<=…<=ak,其中ai在Ai内。由于r是最长链大小,因此r>=k。由于X被划分成了k个反链,因此

r>=k>=p。

(3)因此r=p,定理1得证。

 

【解决】

要求最少的覆盖,按照Dilworth定理

最少链划分 = 最长反链长度

所以最少系统 = 最长导弹高度上升序列长度。

【codevs1044】导弹拦截问题与Dilworth定理的更多相关文章

  1. HDU 1257 最少拦截系统(Dilworth定理+LIS)

    最少拦截系统 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. 导弹拦截与Dilworth定理

    这两天被Dilworth.链和反链搞到头昏脑胀,终于有点眉目,现在来总结一下. Dilworth定理说的是:对于一个偏序集,其最少链划分数等于其最长反链的长度. Dilworth定理的对偶定理说的是: ...

  3. 导弹拦截( 二分+dilworth定理)

    https://www.luogu.org/problemnew/show/P1020 原题 接下来是dilworth定理 https://blog.csdn.net/u011676717/artic ...

  4. 洛谷P1020 导弹拦截 题解 LIS扩展题 Dilworth定理

    题目链接:https://www.luogu.com.cn/problem/P1020 题目大意: 给你一串数,求: 这串数的最长不上升子序列的长度: 最少划分成多少个子序列是的这些子序列都是不上升子 ...

  5. codevs1044:dilworth定理

    http://www.cnblogs.com/submarine/archive/2011/08/03/2126423.html dilworth定理的介绍 题目大意:求一个序列的lds 同时找出这个 ...

  6. codevs1044 拦截导弹==洛谷 P1020 导弹拦截

    P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天 ...

  7. (转载)偏序集的Dilworth定理学习

    导弹拦截是一个经典问题:求一个序列的最长不上升子序列,以及求能最少划分成几组不上升子序列.第一问是经典动态规划,第二问直接的方法是最小路径覆盖, 但是二分图匹配的复杂度较高,我们可以将其转化成求最长上 ...

  8. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

  9. Dilworth定理

    来自网络的解释: 定理内容及其证明过程数学不好看不懂. 通俗解释: 把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度(LIS) EXAMPLE 1   HDU 1257 ...

随机推荐

  1. 九度OJ,题目1089:数字反转

    题目描述: 12翻一下是21,34翻一下是43,12+34是46,46翻一下是64,现在又任意两个正整数,问他们两个数反转的和是否等于两个数的和的反转. 输入: 第一行一个正整数表示测试数据的个数n. ...

  2. ZOJ 3820 Building Fire Stations 求中点+树的直径+BFS

    题意:给一棵树,要求找出两个点,使得所有点到这两个点中距离与自己较近的一个点的距离的最大值(所有点的结果取最大的值,即最远距离)最小. 意思应该都能明白. 解法:考虑将这棵树摆直如下: 那么我们可以把 ...

  3. HDU 3584 Cube --三维树状数组

    题意:给一个三维数组n*n*n,初始都为0,每次有两个操作: 1. 翻转(x1,y1,z1) -> (x2,y2,z2) 0. 查询A[x][y][z] (A为该数组) 解法:树状数组维护操作次 ...

  4. Linux由管道组成的值得学习的命令

    1.Linux查找不以#开头的行的命令如:cat /etc/vsftpd/vsftpd.conf | grep -v "#"

  5. java 12-2 String和StringBuffer之间的转换

    为什么我们要讲解类之间的转换: A -- B的转换 我们把A转换为B,其实是为了使用B的功能. B -- A的转换 我们可能要的结果是A类型,所以还得转回来. String和StringBuffer的 ...

  6. iOS9 判断微信qq是否安装

    iOS 9检测QQ.微信是否安装无效的解决方法 在info.plist里面添加LSApplicationQueriesSchemes(Array类型),然后插入weixin, wechat, mqq的 ...

  7. javascript获取当前的时间戳

    JavaScript 获取当前时间戳:第一种方法: var timestamp = Date.parse(new Date()); 结果:1280977330000第二种方法: var timesta ...

  8. 安装依赖包时--save-dev以及-save的区别及意义

    首先这样做会生成一个package.json的配置文件,并在里面增加相应的版本信息,以后运行程序时,安装依赖包可以直接 npm  install或者你有安装淘宝镜像,那就cnpm install 就一 ...

  9. eval() 函数

    eval() 函数可计算某个字符串,并执行其中的的 JavaScript 代码. var str = '12+45*45'; alert(eval(str))//计算结果 还有一个重要作用可以把字符串 ...

  10. ios--Attributes和ParagraphStyle介绍

    NSMutableParagraphStyle的部分属性: typedef NS_ENUM(NSInteger, NSLineBreakMode) {/* What to do with long l ...