Stanford大学机器学习公开课(六):朴素贝叶斯多项式模型、神经网络、SVM初步
(一)朴素贝叶斯多项式事件模型
其在NB-MEM中的向量表示则如下所示:
在NB-MEM中,假设文本的生成过程如下:
于是,我们可以得到参数在训练集上的极大似然估计:
在φk|y=1和φk|y=0
上使用Laplace平滑,得到公式如下:
其中,|V|为词典的大小。
分子的意思是对所有标签为1的邮件求和,即只考虑垃圾邮件,之后对垃圾邮件中的所有词求和,它加起来应该是词k出现在垃圾邮件中的次数。
假如邮件中只有a,b,c这三个词,他们在词典的位置分别是1,2,3,前两封邮件都只有两个词,后两封有3个词。
假如新来一封邮件为b,c,那么特征表示为{2,3}
那么该邮件是垃圾邮件概率是0.6。
,而朴素贝叶斯里面针对每个特征求的φxj=1|y=1
,而且这里的特征值维度是参差不齐的。
其中,xi是输入的特征向量的各个分量,sigmoid是计算单元,output是函数输出。sigmoid计算单元有参数θ,其函数形式为:
而神经网络则是将这样的计算单元组合起来,如下图所示:
其中,a1,a2,a3是中间单元的输出。可以看到,该图所示的神经网络有四个参数,分别为四个sigmoid单元的参数。这些参数之间的关系如下式所述:
这是第一次视频里就提到的二次成本函数(quadratic cost
function),可以使用梯度下降方法最小化成本函数来求得参数,在神经网络中的梯度下降算法有一个专门的名称叫做反向传播算法。
layer),与输出直接项链的称为输出层(output
layer)。神经网络算法的一大特点就在于不知道隐藏层计算的东西的意义,另一个特点在于神经网络有比较多的局部最优值,可以通过多次随机设定初始值然后运行梯度下降算法获得最优值。
LeCun,他以字符识别与卷积神经网络而著名。另外一个应用则是NETtalk神经网络,使用神经网络来阅读文本,作者是Terry
J.Sejnowski。
Machine),必须先了解函数间隔与几何间隔。一下假设数据集是线性可分的。
而目标函数h也由:
变为:
其中,公式15中x,θ εRn+1
,且x0=1。而在公式16中,x,ω εRn
,b取代了公式15中x0的作用。
公式17还有一个性质,即对于正确分类的数据点,函数间隔不小于0。
Stanford大学机器学习公开课(六):朴素贝叶斯多项式模型、神经网络、SVM初步的更多相关文章
- Andrew Ng机器学习公开课笔记 -- 朴素贝叶斯算法
网易公开课,第5,6课 notes,http://cs229.stanford.edu/notes/cs229-notes2.pdf 前面讨论了高斯判别分析,是一种生成学习算法,其中x是连续值 这里要 ...
- Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...
- Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型
(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x), ...
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- Stanford大学机器学习公开课(二):监督学习应用与梯度下降
本课内容: 1.线性回归 2.梯度下降 3.正规方程组 监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案 1.线性回归 问题引入:假设有一房屋销售的数据如下: 引 ...
- LR 算法总结--斯坦福大学机器学习公开课学习笔记
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数.(此部分转自 XGBoost 与 Boosted Tree) 一.模型和参数 模型指给定输入xi如何去 ...
- 【机器学习】文本分类——朴素贝叶斯Bayes
朴素贝叶斯主要用于文本分类.文本分类常见三大算法:KNN.朴素贝叶斯.支持向量机SVM. 一.贝叶斯定理 贝叶斯公式思想:利用已知值来估计未知概率.已知某条件概率,如何得到两个事件交换后的概率,也就是 ...
- 机器学习算法实践:朴素贝叶斯 (Naive Bayes)(转载)
前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾 ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
随机推荐
- C#获取本机磁盘信息
照着书敲的.留作笔记吧. using System; using System.Collections.Generic; using System.Linq; using System.Text; u ...
- 详细解读Jquery各Ajax函数:$.get(),$.post(),$.ajax(),$.getJSON()
一,$.get(url,[data],[callback]) 说明:url为请求地址,data为请求数据的列表(是可选的,也可以将要传的参数写在url里面),callback为请求成功后的回调函数,该 ...
- linux学习笔记一----------文件相关操作
一.目录结构 二.文件管理操作命令(有关文件夹操作,使用Tab键自动补全文件名(如果多个默认第一个)) 1.ls 查看目录信息:ls -l 查看目录详细信息(等价于ll 某些系统不支持) 2.pwd ...
- Memcached在windows下的安装于使用
原文链接:http://blog.csdn.net/jjmaiz/article/details/7935672 有一点要注意的是,上文作者没有提及: 将php_memcached.dll放在ext文 ...
- html中input输入框屏蔽鼠标右键
<label> <input id="ckdestinationId" type="text" oncontextmenu="ret ...
- Struts2标签简介
Struts2标签简介 Struts2标签的优势 标签库简化了用户对标签的使用 结合OGNL使用,对于集合.对象的访问功能非常强大 提供可扩展的主题.模板支持,极大简化了视图页面的编写 不依赖任何表现 ...
- Android Studio 的安装和配置篇(Windows篇)
上一篇介绍完了Android Studio,这一篇就专门来讲讲怎么安装配置的吧. 其实好多人都卡到安装配置这一步,想当初我也是,万恶的XX防火墙,导致下载Android Studio 的gradle异 ...
- 关于angularjs中的ng-class 变量问题
时常会用到ng-class.非常的方便,基本的用法就是 当title等于通金所的时候,就增加error-tip这个class,但是,我们有时候这个值不能写死,明白我的意思吗,明白吗,好吧,反正就要是个 ...
- 草根玩微博 中产玩微信 土豪玩什么?支持Yo的iWatch?
<中国新媒体发展报告(2014)>发布了一些新媒体的使用情况数据,25.6%无收入群体人数在玩微博,32.0%的微信用户属于月收入3000~5000元的中产阶层,那么土豪会玩什么新媒体呢? ...
- [BZOJ1370][Baltic2003]Gang团伙
[BZOJ1370][Baltic2003]Gang团伙 试题描述 在某城市里住着n个人,任何两个认识的人不是朋友就是敌人,而且满足: 1. 我朋友的朋友是我的朋友: 2. 我敌人的敌人是我的朋友: ...