luogu P3412 仓鼠找sugar II 期望 树形dp
LINK:仓鼠找sugar II
以前做过类似的期望题目 加上最后的树形dp不算太难 还是可以推出来的。
容易发现 当固定起点和终点的时候 可以先固定根 这样就不用分到底是正着走还是倒着走了。
1为根 我们要求 x到y的期望步数.
由于期望的线性性 可以设出f[x]表示x到父亲的期望步数 g[x]表示父亲到儿子的期望步数。
很容易得到转移 不再赘述.
然后暴力找这条路径累加答案即可。
然后 就可以n^3的统计答案了 倍增优化一下就是n^2log的 考虑以每个点统计答案就发现可以n^2统计答案。
最后考虑树形dp 其实没必要每次统计一边答案 直接dp做。
总思想就是先统计所有x子树内所有点到x的贡献 x到自己子树内所有点的贡献。
最后是 x的子树互相跑的贡献 就可以做到O(n)了。
const int MAXN=100010;
int n,len;
int lin[MAXN],sz[MAXN],ver[MAXN<<1],nex[MAXN<<1],du[MAXN];
ll f[MAXN],g[MAXN],w[MAXN],s[MAXN],ans;
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;++du[y];
}
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;
p=p>>1;
}
return cnt;
}
inline void dfs(int x,int fa)
{
f[x]=du[x];
go(x)if(tn!=fa)dfs(tn,x),f[x]=(f[x]+f[tn])%mod;
}
inline void dfs1(int x,int fa)
{
go(x)
if(tn!=fa)
{
g[tn]=(g[x]+f[x]-f[tn]+mod)%mod;
dfs1(tn,x);
}
}
inline void dp(int x,int fa)
{
sz[x]=1;w[x]=f[x];//w[x]表示x子树内的所有点走向x的父亲的期望步数.
s[x]=g[x];//s[x]表示x的父亲走向x子树内所有点的期望步数.
ll cnt1=0,cnt2=0,ss=0;
go(x)
{
if(tn==fa)continue;
dp(tn,x);
//统计子树两边互走的情况.
ans=(ans+cnt1*sz[tn]+s[tn]*ss)%mod;
ans=(ans+cnt2*sz[tn]+w[tn]*ss)%mod;
//先统计所有点到x的贡献.
ans=(ans+w[tn])%mod;
cnt1=(cnt1+w[tn])%mod;
w[x]=(w[x]+w[tn]+f[x]*sz[tn])%mod;
//再统计x到所有点的贡献.
ans=(ans+s[tn])%mod;
s[x]=(s[x]+s[tn]+g[x]*sz[tn])%mod;
cnt2=(cnt2+s[tn])%mod;
ss+=sz[tn];sz[x]+=sz[tn];
}
}
int main()
{
freopen("1.in","r",stdin);
get(n);
rep(2,n,i)
{
int x,y;
get(x);get(y);
add(x,y);add(y,x);
}
dfs(1,0);dfs1(1,0);
//rep(1,n,i)put(g[i]);
dp(1,0);putl(ans*ksm((ll)n*n%mod,mod-2)%mod);
return 0;
}
luogu P3412 仓鼠找sugar II 期望 树形dp的更多相关文章
- Luogu P3412 仓鼠找$sugar$ $II$
Luogu P3412 仓鼠找\(sugar\) \(II\) 题目大意: 给定一棵\(n\)个点的树, 仓鼠每次移动都会等概率选择一个与当前点相邻的点,并移动到此点. 现在随机生成一个起点.一个终点 ...
- 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...
- P3412 仓鼠找sugar II
思路 挺神的概率期望.. 好吧是我太弱了,完全没有往那里想 注意期望是具有线性性的,一条路径的期望可以变成每条边的期望求和 概率是某件事发生的可能性,期望是某件事确定发生的代价 首先没有终点的条件并不 ...
- [Luogu 3398] 仓鼠找sugar
[Luogu 3398] 仓鼠找sugar 又是 LCA- 前两天死活写不过的一个题今天终于顺手切了. 思路嘛参考了一楼题解. 就是说,对于 a, b, c, d 四个点, 令 x = LCA(a, ...
- [luogu3412]仓鼠找sugar II
题面在这里 题意 给定一棵树(\(n\le10^5\)),仓鼠随机选择起点和终点,之后从起点开始随机游走,每次都会等概率地选择和其相邻的任一道路,直到到达终点,求到达终点时步数的期望 sol 因为这一 ...
- luogu P3398 仓鼠找sugar [LCA]
题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室(c) ...
- 仓鼠找sugar II
题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a,是任意的)他的基友卧室(b,还是任意的).(注 ...
- 【luogu P3398 仓鼠找sugar】 题解
题目链接:https://www.luogu.org/problemnew/show/P3398 辣鸡树剖1300ms 倍增大法吼啊 #include <cstdio> #include ...
- Luogu P3398 仓鼠找sugar
这还是一道比较好的树剖题(去你的树剖,LCA即可) 这里主要讲两种思路,其实都是很基本也很经典的 1 树链剖分 还是先讲一下这种算法吧,虽然写起来很烦(不过感觉写多了就习惯了,而且还有一种莫名的快感) ...
随机推荐
- 曹工说面试:当应用依赖jar包的A版本,中间件jar包依赖B版本,两个版本不兼容,这还怎么玩?
背景 大一点的公司,可能有一些组,专门做中间件的:假设,某中间件小组,给你提供了一个jar包,你需要集成到你的应用里.假设,它依赖了一个日期类,版本是v1:我们应用也依赖了同名的一个日期类,版本是v2 ...
- requirejs之demo
具体的理论就不讲了,可以参考 http://www.ruanyifeng.com/blog/2012/10/javascript_module.html http://www.ruanyifeng.c ...
- 实现 (5).add(3).minus(2) 功能
Number.prototype.add = function (number) { if (typeof number !== 'number') { throw new Error('请输入数字- ...
- C#联合WINCC之数据通信
[公众号dotNet工控上位机:thinger_swj] 在工控领域中,WINCC仍然占有很大的市场份额.很多时候我们说学习C#开发上位机可以取代传统的组态软件,两者就像冤家一样,然而,即使是冤家,也 ...
- Python and or not 优先级
not > and >or 1 or 5 and 4: -> 1 or 4-> 1 (1 or 5) and 4: ->1 and 4 ->4 x or y . x ...
- Java数据类型自动转换(++ ,+=)
在算术表达式中的自动类型转换 数据从类型范围小的自动向数据范围大的转换 整数向浮点数转换(包括long类型向float转换) 例子: char类型的范围内与整数之间转换依据ASCII表 强制转换会丢失 ...
- Go的100天之旅-01初识Go
初识Go Go简介 Go的历史 上个世纪70年代Ken Thompson和Dennis M. Ritchie合作发明了UNIX操作系统同时Dennis M. Ritchie发明了C语言. 2007年的 ...
- db2数据库字段更新当前时间
db2数据库中想要将字段的时间通过sql语句的方式更新: 例如: Update tablename set 字段1='打酱油', 字段2 = TO_CHAR(current timestamp,'YY ...
- Linux下diff工具
目录 CentOS 7为例 Meld DiffMerge KDiff3 Kompare CentOS 7为例 Meld Installation 官网 $ sudo yum install meld; ...
- Vuex与axios的封装和调用
Vuex状态管理 状态就是数据. 在react里有个Flux的数据流管理(单向数据流) 作用1:实现组件之间的数据共享. 作用2:用于缓存.(避免当用户频繁点击,页面不断调接口) 先安装 ...