题目描述

原题来自:POJ 3417

Dark 是一张无向图,图中有 N 个节点和两类边,一类边被称为主要边,而另一类被称为附加边。Dark 有 N–1 条主要边,并且 Dark 的任意两个节点之间都存在一条只由主要边构成的路径。另外,Dark 还有 M 条附加边。

你的任务是把 Dark 斩为不连通的两部分。一开始 Dark 的附加边都处于无敌状态,你只能选择一条主要边切断。一旦你切断了一条主要边,Dark 就会进入防御模式,主要边会变为无敌的而附加边可以被切断。但是你的能力只能再切断 Dark 的一条附加边。

现在你想要知道,一共有多少种方案可以击败 Dark。注意,就算你第一步切断主要边之后就已经把 Dark 斩为两截,你也需要切断一条附加边才算击败了 Dark。

输入格式

第一行包含两个整数 N 和 M;

之后 N – 1 行,每行包括两个整数 A 和 B,表示 A 和 B 之间有一条主要边;

之后 M 行以同样的格式给出附加边。

输出格式

输出一个整数表示答案。

样例

样例输入

4 1
1 2
2 3
1 4
3 4

样例输出

3

数据范围与提示

对于 20% 的数据,1≤N,M≤100;

对于 100% 的数据,1≤N≤10^5,1≤M≤2×10^5。数据保证答案不超过 2^31−1。

_______________________________________________________________________________________

每一条非树边,都对应这一条树上的链,那么砍断这条非数遍后对应链上的数遍砍断就可以把图分成两半。

但是两条非树边对应的链可能有重合,这样砍断重合的边,图就不能分成两半。

所以对于每条非树边,要统计对应的树链上的各个边的重叠次数。这就用到了树上查分。

所以,树边的重叠次数为1是,答案加一,表示砍断树边后有一条非树边与之对应,可以破开环,使图成为两半。

如果重叠次数为2及以上,说明砍断该树边,还有两条及以上的非树边相连,不能把图分成两半,答案不变。

如果重叠次数为0,说明该树边不在环上,切断它直接可以把图分成两半,所以非树边可以任意选,答案加M.

_______________________________________________________________________________________

 1 #include<bits/stdc++.h>
2 using namespace std;
3 const int maxn=1e5+10;
4 int n,m;
5 struct edge
6 {
7 int u,v,nxt;
8 }e[maxn<<1];
9 int head[maxn],js;
10 int dep[maxn],val[maxn];
11 int f[maxn][20];
12 long long ans;
13 void addage(int u,int v)
14 {
15 e[++js].u=u;e[js].v=v;
16 e[js].nxt=head[u];head[u]=js;
17 }
18 void dfs(int u,int fa)
19 {
20 dep[u]=dep[fa]+1;
21 f[u][0]=fa;
22 for(int i=1;i<20;++i)f[u][i]=f[f[u][i-1]][i-1];
23 for(int i=head[u];i;i=e[i].nxt)
24 {
25 int v=e[i].v;
26 if(fa!=v)dfs(v,u);
27 }
28 }
29 int lca(int u,int v)
30 {
31 if(dep[u]<dep[v])swap(u,v);
32 for(int i=19;i>=0;--i)if(dep[f[u][i]]>=dep[v])u=f[u][i];
33 if(u==v)return u;
34 for(int i=19;i>=0;--i)if(f[u][i]!=f[v][i])u=f[u][i],v=f[v][i];
35 return f[u][0];
36 }
37 void dfsf(int u,int fa)
38 {
39 for(int i=head[u];i;i=e[i].nxt)
40 {
41 int v=e[i].v;
42 if(v!=fa)
43 {
44 dfsf(v,u);
45 val[u]+=val[v];
46 }
47 }
48 if(val[u]==0 && u!=1)ans+=m;
49 else if(val[u]==1)ans++;
50 }
51 int main()
52 {
53 scanf("%d%d",&n,&m);
54 for(int u,v,i=1;i<n;++i)
55 {
56 scanf("%d%d",&u,&v);
57 addage(u,v);addage(v,u);
58 }
59 dfs(1,0);
60 for(int u,v,i=0;i<m;++i)
61 {
62 scanf("%d%d",&u,&v);
63 int l=lca(u,v);
64 ++val[u];++val[v];
65 val[l]-=2;
66 }
67 dfsf(1,0);
68 cout<<ans;
69 return 0;
70 }

LOJ10131暗的连锁的更多相关文章

  1. loj10131 暗的连锁

    传送门 分析 首先我们知道如果在一棵树上加一条边一定会构成一个环,而删掉环上任意一条边都不改变连通性.我们把这一性质扩展到这个题上不难发现如果一条树边不在任意一个新边构成的环里则删掉这条边之后可以删掉 ...

  2. LOJ #10131 「一本通 4.4 例 2」暗的连锁

    LOJ #10131 「一本通 4.4 例 2」暗的连锁 给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边和一条非树边使得图不连通 , 求方案数 . $n \le 10 ...

  3. LOJ10131. 「一本通 4.4 例 2」暗的连锁【树上差分】

    LINK solution 很简单的题 你就考虑实际上是对每一个边求出两端节点分别在两个子树里面的附加边的数量 然后这个值是0第二次随便切有m种方案,如果这个值是1第二次只有一种方案 如果这个值是2或 ...

  4. 倍增法求lca:暗的连锁

    https://loj.ac/problem/10131 #include<bits/stdc++.h> using namespace std; struct node{ int to, ...

  5. LOJ P10131 暗的连锁 题解

    每日一题 day27 打卡 Analysis 对于每条非树边 , 覆盖 x 到 LCA 和 y到 LCA 的边 , 即差分算出每个点和父亲的连边被覆盖了多少次 .被覆盖 0 次的边可以和 m 条非树边 ...

  6. POJ3417 Network暗的连锁 (树上差分)

    树上的边差分,x++,y++,lca(x,y)-=2. m条边可以看做将树上的一部分边覆盖,就用差分,x=1,表示x与fa(x)之间的边被覆盖一次,m次处理后跑一遍dfs统计子树和,每个节点子树和va ...

  7. LuoguP3128 [USACO15DEC]最大流Max Flow (树上差分)

    跟LOJ10131暗的连锁 相似,只是对于\(lca\)节点把它和父亲减一 #include <cstdio> #include <iostream> #include < ...

  8. loj题目总览

    --DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...

  9. CSU训练分类

    √√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...

随机推荐

  1. 容器编排系统K8s之访问控制--RBAC授权

    前文我们了解了k8s上的访问控制机制,主要对访问控制中的第一关用户认证做了相关说明以及常规用户的配置文件的制作,回顾请参考:https://www.cnblogs.com/qiuhom-1874/p/ ...

  2. mysql性能调优注意事项

    1.最左原则  注意遇到> < like  between失效 2.对于like 查询  遇到最左%索引无效 3.SQL性能优化目标:至少要达到range(对索引进行范围查找)级别,要求是 ...

  3. ASP.NET Core Controller与IOC的羁绊

    前言 看到标题可能大家会有所疑问Controller和IOC能有啥羁绊,但是我还是拒绝当一个标题党的.相信有很大一部分人已经知道了这么一个结论,默认情况下ASP.NET Core的Controller ...

  4. 学习一下 SpringCloud (三)-- 服务调用、负载均衡 Ribbon、OpenFeign

    (1) 相关博文地址: 学习一下 SpringCloud (一)-- 从单体架构到微服务架构.代码拆分(maven 聚合): https://www.cnblogs.com/l-y-h/p/14105 ...

  5. linux下用户管理命令、用户组管理命令

    useradd 添加新用户 1.基本语法 useradd 用户名                   (功能描述:添加新用户) useradd -g 组名 用户名      (功能描述:添加新用户到某 ...

  6. Linux 下 swap 分区及作用详解

    我们在安装系统的时候已经建立了 swap 分区.swap 分区是 Linux 系统的交换分区,当内存不够用的时候,我们使用 swap 分区存放内存中暂时不用的数据.也就是说,当内存不够用时,我们使用 ...

  7. Liunx运维(十一)-系统管理命令

    文档目录: 一.lsof:查看进程打开的文件 二.uptime:显示系统的运行时间及负载 三.free:查看系统内存信息 四.iftop:动态显示网络接口流量信息 五.vmstat:虚拟内存统计 六. ...

  8. 使用GitHub Actions自动编译部署hexo博客

    前言 使用hexo博客也挺久的,最开始是本地hexo clean && hexo g,最后hexo d推送到服务器.后来是本地hexo clean && hexo g, ...

  9. CQRS与Event Sourcing之浅见

    引言 DDD是近年软件设计的热门.CQRS与Event Sourcing作为实施DDD的一种选择,也逐步进入人们的视野.围绕这两个主题,软件开发的大咖[Martin Fowler].[Greg You ...

  10. VBA实现相同行合并

    帮人捣鼓了个VBA代码用来实现多行合并,具体需求为:列2/列3/列4 相同的情况下,则对应的行合并为一行,且列1用空格隔开,列5则相加: (对大多数办公室职员,VBA还算是提高效率的一个利器吧) 最终 ...