LOJ #10131 「一本通 4.4 例 2」暗的连锁

给一棵 \(n\) 个点的树加上 \(m\) 条非树边 , 现在需要断开一条树边一条非树边使得图不连通 , 求方案数 .

$n \le 10^5 , m \le 2*10^5 $ , 保证答案在 \(int\) 范围内.

对于每条非树边 , 覆盖 \(x\) 到 \(LCA\) 和 \(y\)到 \(LCA\) 的边 , 即差分算出每个点和父亲的连边被覆盖了多少次 .

被覆盖 \(0\) 次的边可以和 \(m\) 条非树边搭配 , 被覆盖 \(1\) 次的边可以和唯一的非树边搭配 , \(2\) 次以上的不能产生贡献 .

时间复杂度 \(O(n+m)\)

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
#define log2 LLLLog2
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int N = 3e5 + 5;
const int M = 6e5 + 5;
const int logN = 20; struct Edge{
int v,w,nxt;
}e[M];
int first[N],Ecnt=0;
inline void Add_edge(int u,int v,int w=0){
e[++Ecnt]=(Edge){v,w,first[u]};
first[u]=Ecnt;
} int fa[N][logN], dep[N], tag[N], log2[N];
int n, m, ans; inline void dfs1(int u, int pre){
fa[u][0] = pre, dep[u] = dep[pre] + 1;
for(int i = 1; fa[u][i - 1]; ++i){
fa[u][i] = fa[fa[u][i - 1]][i - 1];
}
for(int i = first[u]; i; i = e[i].nxt){
int v = e[i].v;
if(v != pre) dfs1(v, u);
}
} inline int LCA(int x, int y){
if(dep[x] < dep[y]) swap(x, y);
for(int i = log2[dep[x] - dep[y]]; i >= 0; --i){
if(dep[fa[x][i]] >= dep[y]){
x = fa[x][i];
}
}
if(x == y) return x;
for(int i = log2[dep[x]]; i >= 0; --i){
if(fa[x][i] != fa[y][i]){
x = fa[x][i], y = fa[y][i];
}
}
return fa[x][0];
} inline void dfs2(int u, int pre){
for(int i = first[u]; i; i = e[i].nxt){
int v = e[i].v;
if(v == pre) continue;
dfs2(v, u);
tag[u] += tag[v];
}
} int main(){
n = read(), m = read();
log2[0] = -1;
for(int i = 1; i <= n; ++i) log2[i] = log2[i >> 1] + 1;
for(int i = 1; i < n; ++i){
int x = read(), y = read();
Add_edge(x, y);
Add_edge(y, x);
}
dfs1(1, 0);
for(int i = 1; i <= m; ++i){
int x = read(), y = read(), p = LCA(x, y);
++tag[x], ++tag[y], tag[p] -= 2;
}
dfs2(1, 0);
for(int i = 2; i <= n; ++i){
if(tag[i] == 0) ans += m;
if(tag[i] == 1) ans += 1;
}
printf("%d\n", ans);
}

LOJ #10131 「一本通 4.4 例 2」暗的连锁的更多相关文章

  1. LOJ10131. 「一本通 4.4 例 2」暗的连锁【树上差分】

    LINK solution 很简单的题 你就考虑实际上是对每一个边求出两端节点分别在两个子树里面的附加边的数量 然后这个值是0第二次随便切有m种方案,如果这个值是1第二次只有一种方案 如果这个值是2或 ...

  2. LOJ#10064. 「一本通 3.1 例 1」黑暗城堡

    LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...

  3. Loj 10115 「一本通 4.1 例 3」校门外的树 (树状数组)

    题目链接:https://loj.ac/problem/10115 题目描述 原题来自:Vijos P1448 校门外有很多树,学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的 ...

  4. LOJ#10065. 「一本通 3.1 例 2」北极通讯网络

    题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...

  5. LOJ#10106. 「一本通 3.7 例 2」单词游戏

    题目链接:https://loj.ac/problem/10106 题目描述 来自 ICPC CERC 1999/2000,有改动. 有 NNN 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词. ...

  6. LOJ #10132. 「一本通 4.4 例 3」异象石

    题目地址 LOJ 题解 神仙思路.思路参考自<算法竞赛进阶指南>. 考虑维护dfs序中相邻两个石头的距离,那么每次?的答案就是sum/2(首尾算相邻) 然后维护一下拿个平衡树/set维护一 ...

  7. LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci

    题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...

  8. LOJ 10138 -「一本通 4.5 例 1」树的统计

    树链剖分模板题,详见这篇博客.

  9. LOJ 10155 - 「一本通 5.2 例 3」数字转换

    前言 从现在开始,这个博客要写一些题解了.起初,开这个博客只是好玩一样,没事就写写CSS.JS,然后把博客前端搞成了现在这个样子.以前博客只是偶尔记录一些东西,刷题也从来不记录,最近受一些学长的影响, ...

随机推荐

  1. 对C#泛型实例化对像

    public class A { } public class B<T> { public static T Get() { //在这一块如何实例化T这个对象呢?如果用default(T) ...

  2. 如何设置mysql远程访问及防火墙设置

    笔者在一个实际的项目中需要MYSQL远程访问. 情景: 安装好Mysql, 本地访问正常,很奇怪局域的机器都无法访问该服务器上的MYSQL数据库. 经过资料查找 原来Mysql默认是不可以通过远程机器 ...

  3. CCPC2016沈阳站

    A.模拟 B.模拟 C(hdu5950):(矩阵快速幂) 题意:求f(n)=2f(n-2)+f(n-1)+n^4 分析:矩阵快速幂,(f(n),f(n-1),n^4,n^3,n^2,n,1) 注意:矩 ...

  4. SQL将JSON转成列

    好久不写东西,这个也没什么技术含量,放上来玩玩,也许有人用的着. /** * create procedure for get all fields from json * * Mark * * 20 ...

  5. IntelliJ IDEA 快捷键备忘

    打开关闭项目结构树 Alt + 1 查看方法定义 Ctrl + B 查看方法实现 Ctrl + Alt + B 查看类结构 Ctrl + F12 弹出 或 Alt + 7 右侧栏 查看类继承结构 Ct ...

  6. js函数设计原则

    一般认为函数指具有返回值的子程序,过程指没有返回值的子程序.C++中把所有子程序成为函数,其实那些返回值为void的 函数在语义上也是过程.函数与过程的区别更多是语义上的区别,而不是语法的区别. 语言 ...

  7. Robot Framework作者建议如何选择自动化测试框架

    本文摘自:InfoQ中文站http://www.infoq.com/cn/news/2012/06/robot-author-suggest-autotest Robot Framework作者建议如 ...

  8. Fastjson简单使用方法

    一.简单数据的序列化 pubic class UserInfo implements Serializable{ private String name; private int age; publi ...

  9. JVM-高效并发

    Java内存模型与线程: Java内存模型的目的是定义程序中各个变量的访问规则,此处的变量包括实例字段.静态字段和构成数组对象的元素,但不包括局部变量和方法参数,因为后者是线程私有的. Java内存模 ...

  10. 巧用同步请求处理react页面刷新问题

    很多时候,我们会遇到这种情况,组件加载需要请求后台数据,然后填充组件.那么我们一般会这样处理:如[使用异步请求的方式]代码: 加载组价的时候,未获得数据,render一个空的div: 然后异步请求数据 ...