一、顺序搜索

顺序搜索 是最简单直观的搜索方法:从列表开头到末尾,逐个比较待搜索项与列表中的项,直到找到目标项(搜索成功)或者 超出搜索范围 (搜索失败)。

根据列表中的项是否按顺序排列,可以将列表分为 无序列表 和 有序列表。对于 无序列表,超出搜索范围 是指越过列表的末尾;对于 有序列表,超过搜索范围 是指进入列表中大于目标项的区域(发生在目标项小于列表末尾项时)或者指越过列表的末尾(发生在目标项大于列表末尾项时)。

1、无序列表

在无序列表中进行顺序搜索的情况如图所示:

def sequentialSearch(items, target):
for item in items:
if item == target:
return True
return False

2、有序列表

在有序列表中进行顺序搜索的情况如图所示:

def orderedSequentialSearch(items, target):
for item in items:
if item == target:
return True
elif item > target:
break
return False

二、二分搜索

实际上,上述orderedSequentialSearch算法并没有很好地利用有序列表的特点。

二分搜索 充分利用了有序列表的优势,该算法的思路非常巧妙:在原列表中,将目标项(target)与列表中间项(middle)进行对比,如果target等于middle,则搜索成功;如果target小于middle,则在middle的左半列表中继续搜索;如果target大于middle,则在middle的右半列表中继续搜索。

在有序列表中进行二分搜索的情况如图所示:

根据实现方式的不同,二分搜索算法可以分为迭代版本和递归版本两种:

1、迭代版本

def iterativeBinarySearch(items, target):
first = 0
last = len(items) - 1
while first <= last:
middle = (first + last) // 2
if target == items[middle]:
return True
elif target < items[middle]:
last = middle - 1
else:
first = middle + 1
return False

2、递归版本

def recursiveBinarySearch(items, target):
if len(items) == 0:
return False
else:
middle = len(items) // 2
if target == items[middle]:
return True
elif target < items[middle]:
return recursiveBinarySearch(items[:middle], target)
else:
return recursiveBinarySearch(items[middle+1:], target)

三、性能比较

上述搜索算法的时间复杂度如下所示:

搜索算法          时间复杂度
-----------------------------------
sequentialSearch O(n)
-----------------------------------
orderedSequentialSearch O(n)
-----------------------------------
iterativeBinarySearch O(log n)
-----------------------------------
recursiveBinarySearch O(log n)
-----------------------------------
in O(n)

可以看出,二分搜索 的性能要优于 顺序搜索。

值得注意的是,Python的成员操作符 in 的时间复杂度是O(n),不难猜出,操作符 in 实际采用的是 顺序搜索 算法。

四、算法测试

# -*- coding: utf-8 -*-
def test_print(algorithm, listname, target):
print(' %d is%s in %s' % (target, '' if algorithm(eval(listname), target) else ' not', listname))
if __name__ == '__main__':
testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]
orderedlist = sorted(testlist)
print('sequentialSearch:')
test_print(sequentialSearch, 'testlist', 3)
test_print(sequentialSearch, 'testlist', 13)
print('orderedSequentialSearch:')
test_print(orderedSequentialSearch, 'orderedlist', 3)
test_print(orderedSequentialSearch, 'orderedlist', 13)
print('iterativeBinarySearch:')
test_print(iterativeBinarySearch, 'orderedlist', 3)
test_print(iterativeBinarySearch, 'orderedlist', 13)
print('recursiveBinarySearch:')
test_print(recursiveBinarySearch, 'orderedlist', 3)
test_print(recursiveBinarySearch, 'orderedlist', 13)

运行结果:

$ python testbasicsearch.py
sequentialSearch:
3 is not in testlist
13 is in testlist
orderedSequentialSearch:
3 is not in orderedlist
13 is in orderedlist
iterativeBinarySearch:
3 is not in orderedlist
13 is in orderedlist
recursiveBinarySearch:
3 is not in orderedlist
13 is in orderedlist

Python实现的数据结构与算法之基本搜索详解的更多相关文章

  1. 用Python实现的数据结构与算法:基本搜索

    一.顺序搜索 顺序搜索 是最简单直观的搜索方法:从列表开头到末尾,逐个比较待搜索项与列表中的项,直到找到目标项(搜索成功)或者 超出搜索范围 (搜索失败). 根据列表中的项是否按顺序排列,可以将列表分 ...

  2. 用Python实现的数据结构与算法:开篇

    一.概述 用Python实现的数据结构与算法 涵盖了常用的数据结构与算法(全部由Python语言实现),是 Problem Solving with Algorithms and Data Struc ...

  3. Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操 ...

  4. python 排序算法总结及实例详解

    python 排序算法总结及实例详解 这篇文章主要介绍了python排序算法总结及实例详解的相关资料,需要的朋友可以参考下 总结了一下常见集中排序的算法 排序算法总结及实例详解"> 归 ...

  5. python中日志logging模块的性能及多进程详解

    python中日志logging模块的性能及多进程详解 使用Python来写后台任务时,时常需要使用输出日志来记录程序运行的状态,并在发生错误时将错误的详细信息保存下来,以别调试和分析.Python的 ...

  6. 数据结构图文解析之:队列详解与C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  7. Python操作redis系列以 哈希(Hash)命令详解(四)

    # -*- coding: utf-8 -*- import redis #这个redis不能用,请根据自己的需要修改 r =redis.Redis(host=") 1. Hset 命令用于 ...

  8. SSD算法及Caffe代码详解(最详细版本)

    SSD(single shot multibox detector)算法及Caffe代码详解 https://blog.csdn.net/u014380165/article/details/7282 ...

  9. Python中第三方库Requests库的高级用法详解

    Python中第三方库Requests库的高级用法详解 虽然Python的标准库中urllib2模块已经包含了平常我们使用的大多数功能,但是它的API使用起来让人实在感觉不好.它已经不适合现在的时代, ...

随机推荐

  1. JMeter尝鲜

    最近打算对一个线上HTTP接口做下压力测试,选择JMeter做为压测工具. 关于JMeter Apache JMeter是Apache组织开发的基于Java的压力测试工具.可以用于对静态的和动态的资源 ...

  2. APM姿态控制流程

    对初学者了解控制流程有一定帮助 在主循环执行过程中(比如Pixhawk的任务调度周期2.5ms,400Hz:APM2.x为10ms,100Hz),每一个周期,程序会按下述步骤执行:• 首先,高层次文件 ...

  3. 网络协议HTTP、TCP/IP、Socket

    网络协议HTTP.TCP/IP.Socket 网络七层由下往上分别为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层.  其中物理层.数据链路层和网络层通常被称作媒体层,是网络工程师所研究的 ...

  4. JS中写继承的方式

    有父子两个函数,代表两个类: var parent = function(){} var child = function(){} 一.直接继承 child.prototype = new paren ...

  5. vue3.0 加载json的“另类”方法(非ajax)

    问题 加载json一定要用ajax的方式吗? 最近学习vue3.0,在实现一个功能的时候发现一个问题-- 写代码的时候,需要的json太长.太多,和代码放在一起太混乱.看代码总有翻来翻去,又没有&qu ...

  6. javascript面试题(一)

    1. var bar = null; console.log(typeof bar === 'object'); //logs true! 尽管 typeof bar === "object ...

  7. Eclipse获取工作空间跟运行空间

    System.out.println(System.getProperty("user.dir"));//当前工作空间 System.out.println(Platform.ge ...

  8. python基础 格式化输出

    格式化输出 '%s %d %.2f' % ('Novak', 33, 1.88) 需要逗号

  9. 分布式事务框架.NetCore CAP总结

    来自CAP原作者yang-xiaodong的原理图: 本文撰写者:cmliu,部分内容引用自官方文档,部分内容待更新# .NetCore CAP # 1,简介 CAP 是一个遵循 .NET Stand ...

  10. Django启动框架自带原始页面(Django一)

    1.安装,cmd中输入命令: pip install django (前提是python已安装完成,才可以使用pip这个python的库管理工具)ps:在cmd中使用pip命令安装时可能因为速度过慢而 ...