题目大意:

给定\(n\)个蚂蚁和\(n\)颗苹果树的坐标,要求每个蚂蚁爬到一颗苹果树旁,使得每个蚂蚁路线不相交且路线总长度最小,求每个蚂蚁爬到哪个苹果树旁?

首先假设有两只蚂蚁路径相交,那么这两个蚂蚁交换目标一定使得总路线缩短且不相交,所以总长度最短时所有蚂蚁路线一定不相交

怎么让总路线最短呢?二分图最小权匹配

其实只要把边权全部取反然后跑最大权匹配就好了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
namespace red{
#define int long long
#define eps (1e-6)
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
const int N=210;
int n;
struct node
{
int x,y;
}ant[N],tr[N];
double jx[N][N];
inline int sqr(int x){return x*x;}
inline double dis(int i,int j)
{
return sqrt(sqr(ant[i].x-tr[j].x)+sqr(ant[i].y-tr[j].y));
}
double exl[N],exr[N],slack[N];
bool visl[N],visr[N];
int f[N],g[N];
inline bool find(int x)
{
visl[x]=1;
for(int y=1;y<=n;++y)
{
if(visr[y]) continue;
double tmp=exl[x]+exr[y]-jx[x][y];
if(fabs(tmp)<eps)
{
visr[y]=1;
if(!f[y]||find(f[y]))
{
f[y]=x;
g[x]=y;
return 1;
}
}
else slack[y]=min(tmp,slack[y]);
}
return 0;
}
inline void km()
{
for(int i=1;i<=n;++i)
{
exl[i]=jx[i][1];
for(int j=2;j<=n;++j)
{
exl[i]=max(exl[i],jx[i][j]);
}
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
visl[j]=visr[j]=0;
slack[j]=1e9+7;
}
if(find(i)) continue;
while("haku")
{
double tmp=1e9+7;
int t;
for(int j=1;j<=n;++j)
if(!visr[j]) tmp=min(tmp,slack[j]);
for(int j=1;j<=n;++j)
{
if(visl[j]) exl[j]-=tmp;
if(visr[j]) exr[j]+=tmp;
else
{
slack[j]-=tmp;
if(fabs(slack[j])<eps) t=j;
}
}
if(!f[t]) break;
visr[t]=1,visl[f[t]]=1;
t=f[t];
for(int j=1;j<=n;++j)
slack[j]=min(slack[j],exl[t]+exr[j]-jx[t][j]);
}
memset(visl,0,sizeof(visl));
memset(visr,0,sizeof(visr));
find(i);
}
for(int i=1;i<=n;++i) printf("%lld\n",g[i]);
}
inline void main()
{
while(~scanf("%lld",&n))
{
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
memset(exl,0,sizeof(exl));
memset(exr,0,sizeof(exr));
for(int i=1;i<=n;++i)
{
ant[i].x=read(),ant[i].y=read();
}
for(int i=1;i<=n;++i)
{
tr[i].x=read(),tr[i].y=read();
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
jx[i][j]=-dis(i,j);
}
}
km();
} }
}
signed main()
{
red::main();
return 0;
}

POJ3565的更多相关文章

  1. [poj3565]Ants

    [poj3565]Ants 标签(空格分隔):二分图 描述 Young naturalist Bill studies ants in school. His ants feed on plant-l ...

  2. 【POJ3565】ANTS KM算法

    [POJ3565]ANTS 题意:平面上有2*n个点,N白N黑.为每个白点找一个黑点与之连边,最后所有边不交叉.求一种方案. 题解:KM算法真是一个神奇的算法,虽然感觉KM能做的题用费用流都能做~ 本 ...

  3. poj3565 Ants km算法求最小权完美匹配,浮点权值

    /** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...

  4. POJ-3565 Ants---KM算法+slack优化

    题目链接: https://vjudge.net/problem/POJ-3565 题目大意: 在坐标系中有N只蚂蚁,N棵苹果树,给你蚂蚁和苹果树的坐标.让每只蚂蚁去一棵苹果树, 一棵苹果树对应一只蚂 ...

  5. POJ3565 Ants (不相交线)

    那请告诉我 A - D  B - C  和  A - C  B - D 那个的和小 显然是A - C  B - D  (可以根据四边形 对角线大于对边之和) 然后 求的答案是不是就一定是不相交的 就是 ...

  6. POJ3565带权匹配——km算法

    题目:http://poj.org/problem?id=3565 神奇结论:当总边权最小时,任意两条边不相交! 转化为求二分图带权最小匹配. 可以用费用流做.但这里学一下km算法. https:// ...

  7. POJ3565 Ants 和 POJ2195 Going Home

    Ants Language:Default Ants Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7975 Accepted: ...

  8. ACM学习历程—POJ3565 Ants(最佳匹配KM算法)

    Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees ...

  9. [poj3565] Ants (二分图带权匹配)

    传送门 Description 年轻自然主义者比尔在学校研究蚂蚁. 他的蚂蚁以苹果树上苹果为食. 每个蚁群都需要自己的苹果树来养活自己. 比尔有一张坐标为 n 个蚁群和 n 棵苹果树的地图. 他知道蚂 ...

  10. 带权二分图——KM算法hdu2255 poj3565

    进阶指南的板子好像有点问题..交到hdu上会T 需要了解的一些概念: 交错树,顶标,修改量 #include<iostream> #include<stdio.h> #incl ...

随机推荐

  1. 1. 线性DP 53. 最大子序和.

    53. 最大子序和. https://leetcode-cn.com/problems/maximum-subarray/ func maxSubArray(nums []int) int { dp ...

  2. binary hacks读数笔记(objdump命令)

    一.首先看一下几个常用参数的基本含义: objdump命令是Linux下的反汇编目标文件或者可执行文件的命令,它还有其他作用,下面以ELF格式可执行文件test为例详细介绍: 1.objdump -f ...

  3. python之 socketserver模块的使用

    在我们正常的使用socket模块来写一个server的程序就会显得比较的复杂通常一般流程为 1.生成socket实例对象 2.绑定地址 3.开始监听 4.接收数据 一般demo为 # 服务器 impo ...

  4. Java从后端下载文件到浏览器

    // 注: // 获取项目下文件或者文件流 // File file = new File(this.getClass().getResource("/xls/adminImportUser ...

  5. 计算思维(美国CMU周以真教授)

    博主注:GIScience会议是国际上最为著名的地理信息系统领域的国际会议,自2000年起,每两年举办一次,GIScience 2008会议邀请了美国卡内基-梅隆大学(CMU)计算机系华裔教授周以真博 ...

  6. java开发三年,Java中接口的使用你得知道,不然你凭什么涨薪

    接口概述: 接口是Java语言中的一种引用类型,是方法的"集合",所以接口的内部主要就是定义方法,包含常量,抽象方法(JDK 7及以前),额外增加默认方法和静态方法(JDK 8), ...

  7. Java 滴IO系统

    JAVA IO 流可以概括为 "两个对应,一个桥梁".两个对应指字节流(Byte Stream)和字符流(Char Stream)的对应,输入流和输出流的对应. 一个桥梁指从字节流 ...

  8. VMware与Device/Credential Guard不兼容问题

    启动虚拟机vmware突然报不兼容错误 解决方法: 1首先打开控制面板>程序>启动或关闭Windows功能, 取消Hyper-v的勾选 2.在往下划,关闭Windows沙盒的勾选沙盒和虚拟 ...

  9. Yali 2019-8-15 test solution

    T1. 送货 Description 物流公司要用m辆车派送n件货物.货物都包装成长方体,第i件的高度为hi,重量为wi.因为车很小,一辆车上的货物必须垒成一摞.又因为一些不可告人的原因,一辆车上货物 ...

  10. 2017年第八届蓝桥杯【C++省赛B组】B、C、D、H 题解

    可能因为我使用暴力思维比较少,这场感觉难度不低. B. 等差素数列 #暴力 #枚举 题意 类似:\(7,37,67,97,127,157\) 这样完全由素数组成的等差数列,叫等差素数数列. 上边的数列 ...