导语

在工作场景遇到了这么一个场景,就是需要定期去执行一个缓存接口,用于同步设备配置。首先想到的就是Linux上的crontab,可以定期,或者间隔一段时间去执行任务。但是如果你想要把这个定时任务作为一个模块集成到Python项目中,或者想持久化任务,显然crontab不太适用。Python的APScheduler模块能够很好的解决此类问题,所以专门写这篇文章,从简单入门开始记录关于APScheduler最基础的使用场景,以及解决持久化任务的问题,最后结合其他框架深层次定制定时任务模块这几个点入手。

简单介绍

先简单介绍一下Apscheduler模块包含的四种组件:

  • Trigger触发器
  • Job作业
  • Excutor执行器
  • Scheduler调度器

大概了解了Apscheduler包含的几种概念,现在先来看一下一个简单的示例:

# -*- coding: utf-8 -*-

from apscheduler.schedulers.blocking import BlockingScheduler
import time def hello():
print(time.strftime("%c")) if __name__ == "__main__":
scheduler = BlockingScheduler()
scheduler.add_job(hello, 'interval', seconds=5)
scheduler.start()

示例的输出:

Thu Dec  3 16:01:20 2020
Thu Dec 3 16:01:25 2020
Thu Dec 3 16:01:30 2020
Thu Dec 3 16:01:35 2020
Thu Dec 3 16:01:40 2020
..........

这个简单的示例,我们用上面提到几种组件分析一下运行逻辑:

  • 首先是Scheduler调度器,这个示例使用的BlockingScheduler调度器,在官方文档中的解释是,BlockingScheduler适合当你的这个定时任务程序是唯一运行的程序;换言之,则是BlockingScheduler调度器是一个阻塞调度器,当程序运行这种调度器,进程则会阻塞,无法执行其他操作;
  • 其次是Job作业和触发器,这两个放在一起讲是因为,在定义作业的时候,你就需要选择一个触发器,这里选择的是interval触发器,这种触发器会以固定时间间隔运行作业。换言之,为调度器添加一个hello的工作,并以每5秒的时间间隔执行任务。
  • 最后就是执行器,默认是ThreadPoolExcutor执行器,他们将任务中可调用对象交给线程池执行操作,等完成操作后,执行器会通知调度程序。

内置的三种Trigger触发器类型:

  • date:特定时间仅运行一次作业
  • interval: 固定的时间间隔内运行一次作业
  • cron: 在一天内特定的时间定期运行作业

常见的Scheduler调度器:

  • BlockingScheduler: 调度程序是流程中唯一运行的东西
  • BackgroundScheduler: 调度程序在应用程序内部的后台运行时使用
  • AsyncIOScheduler: 应用程序使用asyncio模块
  • GeventScheduler: 应用程序使用gevent模块
  • TornadoScheduler:构建Tornado应用程序时使用
  • TwistedScheduler: 构建Tornado应用程序时使用
  • QtScheduler: 在构建QT应用程序时使用

常见的JobStore:

  • MemoryJobStore
  • MongoDBJobStore
  • SQLAlchemyJobStore
  • RedisJobStore

进阶使用

通过上面一个简单的示例了解大概的工作流程,以及各个组件在整个流程中的作用,以下的示例是Flask Web框架结合使用Apscheduler定时器,定时执行任务。

# -*- coding: utf-8 -*-

from flask import Flask, Blueprint, request
from apscheduler.executors.pool import ThreadPoolExecutor
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.redis import RedisJobStore
import time app = Flask(__name__)
executors = {"default": ThreadPoolExecutor(5)}
default_redis_jobstore = RedisJobStore(db=2,
jobs_key="apschedulers.default_jobs",
run_times_key="apschedulers.default_run_times",
host = '127.0.0.1',
port = 6379
) scheduler = BackgroundScheduler(executors=executors)
scheduler.add_jobstore(default_redis_jobstore)
scheduler.start() def say_hello():
print(time.strftime("%c")) @app.route("/get_job", methods=['GET'])
def get_job():
if scheduler.get_job("say_hello_test"):
return "YES"
else:
return "NO" @app.route("/start_job", methods=["GET"])
def start_job():
if not scheduler.get_job("say_hello_test"):
scheduler.add_job(say_hello, "interval", seconds=5, id="say_hello_test")
return "Start Scuessfully!"
else:
return "Started Failed" @app.route("/remove_job", methods=["GET"])
def remove_job():
if scheduler.get_job("say_hello_test"):
scheduler.remove_job("say_hello_test")
return "Delete Successfully!"
else:
return "Delete Failed" if __name__ == "__main__":
app.run(host="127.0.0.1", port=8787, debug=True)
  • 先分析Jobstore,这里使用的是RedisJobstore,将任务序列化存入到Redis数据库中。这里顺便提一下,为什么需要设置作业存储器,原因是当调度器程序崩溃时,仍然能够保留作业,当然选择什么作业存储器,可以根据具体的工作场景,目前主流的mysql,mongodb,redis,SQLite基本都支持;
  • 然后再看看Scheduler,这里使用的时BackgroundScheduler,因为这里要求调度程序不能阻塞flask程序的正常接收请求,所以选在BackgrounScheduler让它在开始执行任务时是在后台运行的,不会阻塞主线程;
  • 最后看看工作的逻辑,这里get_job获取作业的状态,查看作业是否存在,start_job则是先判断作业是否启动,然后再决定启动操作,remove_job则是停止作业。而这里的作业定义则是通过interval触发器,每五秒执行一次say_hello任务;

总结

最后总结一下,首先你要设置一个作业存储器用于在调度程序崩溃重新恢复时,还能够在作业存储器中获取到作业继续执行;然后你需要设置一个执行器,这个根据作业的类型,比如时一个CPU密集型的任务,那就可以用进程池执行器,默认是用线程池执行器;最后创建配置调度器,启动调度,可以在启动前添加作业,也可以在启动后添加,删除,获取作业。(在这里需要明白的一点就是应用程序不会直接去操作作业存储器,作业或者执行器,而是调度器提供适当的接口来处理这些接口。)


ApScheduler是一个不错的定时任务库,能够动态的添加删除,同时也支持不同的触发器类型,这也是它的优势,相反一些如果是静态任务,其实可以用如linux的crontab工具去做定时任务。有关这方面的记录还会持续更新,如果有什么问题,可以提出来,大家一起探讨。

Python定时任务利器—Apscheduler的更多相关文章

  1. Python定时任务框架APScheduler 3.0.3 Cron示例

    APScheduler是基于Quartz的一个Python定时任务框架,实现了Quartz的所有功能,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务.基 ...

  2. Python定时任务框架APScheduler

    http://blog.csdn.net/chosen0ne/article/details/7842421 APScheduler是基于Quartz的一个Python定时任务框架,实现了Quartz ...

  3. [转]Python定时任务框架APScheduler

    APScheduler是基于Quartz的 一个Python定时任务框架,实现了Quartz的所有功能,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以 持久化任务 ...

  4. Python 定时任务框架 APScheduler 详解

    APScheduler 最近想写个任务调度程序,于是研究了下 Python 中的任务调度工具,比较有名的是:Celery,RQ,APScheduler. Celery:非常强大的分布式任务调度框架 R ...

  5. python 定时任务框架apscheduler

    文章目录 安装 基本概念介绍 调度器的工作流程 实例1 -间隔性任务 实例2 - cron 任务 配置调度器 方法一 方法二 方法三: 启动调度器 方法一:使用默认的作业存储器: 方法二:使用数据库作 ...

  6. 分布式定时任务框架——python定时任务框架APScheduler扩展

    http://bbs.7boo.org/forum.php?mod=viewthread&tid=14546 如果将定时任务部署在一台服务器上,那么这个定时任务就是整个系统的单点,这台服务器出 ...

  7. python定时任务:apscheduler的使用(还有一个celery~)

    文章摘自:https://www.cnblogs.com/luxiaojun/p/6567132.html 1 . 安装 pip install apscheduler 2 . 简单例子 # codi ...

  8. Python—定时任务(APScheduler实现)

    简介                 APScheduler的全称是Advanced Python Scheduler.它是一个轻量级的基于Quartz的 Python 定时任务调度框架.APSche ...

  9. python 定时任务 from apscheduler.schedulers.blocking import BlockingScheduler

    说明:使用python内置的模块来实现,本篇博客只是以循环定时来示范,其他的可以结合crontab的风格自己设定 一.导包 from apscheduler.schedulers.blocking i ...

随机推荐

  1. 微软面试题: LeetCode 4. 寻找两个正序数组的中位数 hard 出现次数:3

    题目描述: 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2.请你找出并返回这两个正序数组的中位数. 进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决 ...

  2. OxyPlot组件的基本使用

    在制作上位机的时候,很多时候需要使用到监控绘图界面,使用来绘制曲线的组件有很多,GDI+.char.OxyPlot等等,这篇文章用来介绍OxyPlot组件的基本应用,在本文中主要是利用随心数生成函数结 ...

  3. 在FL Studio中如何使用Patcher插件

    Patcher作为FL Studio20中自由度极高的一款插件,深受当今制作人的喜爱.其主要功能用于整合混音插件的输入与输出以及自定义控制器等功能.下面分几部分来介绍这个插件. Patcher的Map ...

  4. CorelDRAW“出血线”的精准预设与辅助线便捷操作

    CorelDRAW软件是一款常用的制图工具,非常适合用于印刷品输出,各种印刷图文制作都依赖于它.所以,我们设计者每次用CorelDRAW制图的一个关键就是要做好"标尺辅助线"设置, ...

  5. 检查字符串结尾 判断一个字符串(str)是否以指定的字符串(target)结尾。

    function confirmEnding(str, target) { var arr = str.replace(/\s+/g, ""); var bb = arr.subs ...

  6. 关于UILabel标签控件的使用小节

    前段时间一直想停下来,总结一下近期在开发中遇到的一些问题顺便分享一下解决问题的思路和方法,无奈人生就像蒲公英,看似自由却身不由己.太多的时间和精力被占用在新项目的开发和之前项目的维护中,总之一句话外包 ...

  7. go创建动态库

    *nix *nix创建so比较方便,写好go代码之后,直接一条命令搞定. go build -buildmode=c-shared -o libgobblob.so 命令执行之后,会生成libgobb ...

  8. C语言精华——内存管理,很多学校学习不到的知识~

    在编写程序时,通常并不知道需要处理的数据量,或者难以评估所需处理数据量的变动程度.在这种情况下,要达到有效的资源利用--使用内存管理,必须在运行时动态地分配所需内存,并在使用完毕后尽早释放不需要的内存 ...

  9. 【mq读书笔记】如何保证三个消息文件的最终一致性。

    考虑转发任务未成功执行,此时消息服务器Broker宕机,导致commitlog,consumeQueue,IndexFile文件数据不一致. commitlog,consumeQueue遍历每一条消息 ...

  10. 手撕HashMap

    前言: 平时工作的时候,用的最多的就是ArrayList和HashMap了,今天看了遍HashMap的源码,决定自己手写一遍HashMap. 一.创建MyHashMap接口       我们首先创建一 ...