[THUPC2019] 找树
一、题目
二、解法
这道题很离谱啊,看上去是求一个最大值,其实是把生成树权值为 \(i\) 的个数都给算出来,因为权值很小。
既然是生成树可以考虑矩阵树定理,我们考虑他是求这样一个式子:
\]
对于这个乘法的理解是很灵活的,只要他能满足直接点值相乘就可以了,比如把边权换成一次多项式来做加法(就是 \(2020\) 年的联合省选题),而这道题是 \(\tt FWT\) 后做矩阵树定理,因为它满足点值相乘。
具体说来,也就是先求出只考虑边权为 \(v\) 的边的矩阵 \(mp[i][j][v]\) ,然后对每个 \(mp[i][j]\) 做 \(\tt FWT\) ,这里的 \(\tt FWT\) 要魔改一下,因为是每一位是独立的,所以每一位做一种 \(\tt FWT\) 是可以的(比如这一位是或运算就做或 \(\tt FWT\))
现在就满足点值相乘了,我们求出每个边权的行列式 \(c[v]\) ,然后对 \(c\) 做同样的 \(\tt IFWT\) ,就得到了每个边权的方案数了。注意我们要一直让所有权值为正才行。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int MOD = 1e9+7;
const int N = 75;
const int M = 4100;
#define int long long
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,w,lim,inv,a[N][N][M],r[N][N],c[M];char s[M];
int qkpow(int a,int b)
{
int r=1;
while(b>0)
{
if(b&1) r=r*a%MOD;
a=a*a%MOD;
b>>=1;
}
return r;
}
void fwt(int *a,int n,int op)
{
for(int i=1,b=0;i<n;i<<=1,b++)
{
int p=i<<1;
if(s[b]=='|')
{
for(int j=0;j<n;j+=p)
for(int k=0;k<i;k++)
{
if(op==1) a[i+j+k]=(a[i+j+k]+a[j+k])%MOD;
else a[i+j+k]=(a[i+j+k]-a[j+k]+MOD)%MOD;
}
}
if(s[b]=='&')
{
for(int j=0;j<n;j+=p)
for(int k=0;k<i;k++)
{
if(op==1) a[j+k]=(a[i+j+k]+a[j+k])%MOD;
else a[j+k]=(a[j+k]-a[i+j+k]+MOD)%MOD;
}
}
if(s[b]=='^')
{
for(int j=0;j<n;j+=p)
for(int k=0;k<i;k++)
{
int x=a[j+k],y=a[i+j+k];
a[j+k]=(x+y)%MOD;
a[i+j+k]=(x-y+MOD)%MOD;
if(op==-1)
{
a[j+k]=a[j+k]*inv%MOD;
a[i+j+k]=a[i+j+k]*inv%MOD;
}
}
}
}
}
int zy()
{
int ans=1;
for(int i=1;i<n;i++)
{
for(int j=i+1;j<n;j++)
if(!r[i][i] && r[j][i])
{
ans=MOD-ans;//手误了
swap(r[i],r[j]);
break;
}
if(!r[i][i]) return 0;
int iv=qkpow(r[i][i],MOD-2);
for(int j=i+1;j<n;j++)
{
int t=r[j][i]*iv%MOD;
for(int k=i;k<n;k++)
r[j][k]=(r[j][k]-t*r[i][k]%MOD+MOD)%MOD;
}
ans=ans*r[i][i]%MOD;
}
return ans;
}
signed main()
{
n=read();m=read();inv=(MOD+1)/2;
scanf("%s",s);w=strlen(s);lim=1<<w;
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),c=read();
a[u][v][c]=(a[u][v][c]+MOD-1)%MOD;
a[v][u][c]=(a[v][u][c]+MOD-1)%MOD;
a[u][u][c]++;a[v][v][c]++;
}
for(int i=1;i<n;i++)
for(int j=1;j<n;j++)
fwt(a[i][j],lim,1);
for(int i=0;i<lim;i++)
{
memset(r,0,sizeof r);
for(int j=1;j<n;j++)
for(int k=1;k<n;k++)
r[j][k]=a[j][k][i];
c[i]=zy();
}
fwt(c,lim,-1);
for(int i=lim-1;i>=0;i--)
if(c[i]>0)
{
printf("%lld\n",i);
return 0;
}
puts("-1");
}
[THUPC2019] 找树的更多相关文章
- 洛谷 P5406 - [THUPC2019]找树(FWT+矩阵树定理)
题面传送门 首先看到这道题你必须要有一个很清楚的认识:这题新定义的 \(\oplus\) 符号非常奇怪,也没有什么性质而言,因此无法通过解决最优化问题的思路来解决这个问题,只好按照计数题的思路来解决, ...
- poj 1655 Balancing Act(找树的重心)
Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...
- Leetcode之深度优先搜索(DFS)专题-513. 找树左下角的值(Find Bottom Left Tree Value)
Leetcode之深度优先搜索(DFS)专题-513. 找树左下角的值(Find Bottom Left Tree Value) 深度优先搜索的解题详细介绍,点击 给定一个二叉树,在树的最后一行找到最 ...
- LeetCode 513. 找树左下角的值(Find Bottom Left Tree Value)
513. 找树左下角的值 513. Find Bottom Left Tree Value 题目描述 给定一个二叉树,在树的最后一行找到最左边的值. LeetCode513. Find Bottom ...
- 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
[题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...
- Java实现 LeetCode 513 找树左下角的值
513. 找树左下角的值 给定一个二叉树,在树的最后一行找到最左边的值. 示例 1: 输入: 2 / \ 1 3 输出: 1 示例 2: 输入: 1 / \ 2 3 / / \ 4 5 6 / 7 输 ...
- 1090 Highest Price in Supply Chain (25 分)(模拟建树,找树的深度)牛客网过,pat没过
A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone invo ...
- Codeforces Beta Round #87 (Div. 2 Only)-Party(DFS找树的深度)
A company has n employees numbered from 1 to n. Each employee either has no immediate manager or exa ...
- poj 1655 找树的重心
树形DP 求树的重心,即选择一个结点删去,使得分出的 若干棵树的结点数 的最大值最小 #include<map> #include<set> #include<cmath ...
随机推荐
- Redis的主从架构+哨兵模式
Redis主从架构 redis主从架构搭建,配置从节点步骤: 1.复制一份redis.conf文件的目录 cd /usr/local/java cp -a redis redis_6380 2.将相关 ...
- Redis 穿透 & 击穿 & 雪崩
原文:https://www.cnblogs.com/binghe001/p/13661381.html 缓存穿透 如果在请求数据时,在缓存层和数据库层都没有找到符合条件的数据,也就是说,在缓存层和数 ...
- Leetcode(877)-石子游戏
亚历克斯和李用几堆石子在做游戏.偶数堆石子排成一行,每堆都有正整数颗石子 piles[i] . 游戏以谁手中的石子最多来决出胜负.石子的总数是奇数,所以没有平局. 亚历克斯和李轮流进行,亚历克斯先开始 ...
- Splunk监控软件操作
一. Splunk公司与产品 美国Splunk公司,成立于2004年,2012年纳斯达克上市,第一家大数据上市公司,荣获众多奖项和殊荣.总部位于美国旧金山,伦敦为国际总部,香港设有亚太支持中心,上海 ...
- confirm() :带有指定消息和 OK 及取消按钮的对话框
定义和用法 confirm() 方法用于显示一个带有指定消息和 OK 及取消按钮的对话框. 语法 confirm(message) 参数描述 message 要在 window 上弹出的对话框中显示的 ...
- codevs1039整数的k划分-思考如何去重复
题目描述将整数n分成k份,且每份不能为空,任意两种划分方案不能相同(不考虑顺序).例如:n=7,k=3,下面三种划分方案被认为是相同的.1 1 51 5 15 1 1问有多少种不同的分法.输入描述输入 ...
- CSS pseudo element All In One
CSS pseudo element All In One CSS 伪元素 https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-elemen ...
- Flutter Widgets
Flutter Widgets Flutter 组件 Syncfusion Flutter Widgets 所有组件均支持即装即用的 Android,iOS和 Web not free https:/ ...
- css & circle & shapes
css & circle & shapes css-tricks circle https://css-tricks.com/the-shapes-of-css/ https://cs ...
- npm & private npm service & nrm & nvm
npm & private npm service & nrm & nvm npm server # nrm https://www.cnblogs.com/xgqfrms/t ...