# 部分函数请参考前一篇或后一篇文章
import tensorflow as tf
import tfrecords2array
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict def lenet(char_classes): y_train = []
x_train = []
y_test = []
x_test = []
for char_class in char_classes:
train_data = tfrecords2array.tfrecord2array(
r"./data_tfrecords/" + char_class + "_tfrecords/train.tfrecords")
test_data = tfrecords2array.tfrecord2array(
r"./data_tfrecords/" + char_class + "_tfrecords/test.tfrecords")
y_train.append(train_data[0])
x_train.append(train_data[1])
y_test.append(test_data[0])
x_test.append(test_data[1])
for i in [y_train, x_train, y_test, x_test]:
for j in i:
print(j.shape)
y_train = np.vstack(y_train)
x_train = np.vstack(x_train)
y_test = np.vstack(y_test)
x_test = np.vstack(x_test) class_num = y_test.shape[-1] print("x_train.shape=" + str(x_train.shape))
print("x_test.shape=" + str(x_test.shape))
sess = tf.InteractiveSession() x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, class_num])
# 把x更改为4维张量,第1维代表样本数量,第2维和第3维代表图像长宽, 第4维代表图像通道数, 1表示黑白
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 第一层:卷积层
conv1_weights = tf.get_variable(
"conv1_weights",
[5, 5, 1, 32],
initializer=tf.truncated_normal_initializer(stddev=0.1))
# 过滤器大小为5*5, 当前层深度为1, 过滤器的深度为32
conv1_biases = tf.get_variable("conv1_biases", [32],
initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(x_image, conv1_weights, strides=[1, 1, 1, 1],
padding='SAME')
# 移动步长为1, 使用全0填充
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) # 激活函数Relu去线性化 # 第二层:最大池化层
# 池化层过滤器的大小为2*2, 移动步长为2,使用全0填充
pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME') # 第三层:卷积层
conv2_weights = tf.get_variable(
"conv2_weights",
[5, 5, 32, 64],
initializer=tf.truncated_normal_initializer(stddev=0.1))
# 过滤器大小为5*5, 当前层深度为32, 过滤器的深度为64
conv2_biases = tf.get_variable(
"conv2_biases", [64], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1],
padding='SAME')
# 移动步长为1, 使用全0填充
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases)) # 第四层:最大池化层
# 池化层过滤器的大小为2*2, 移动步长为2,使用全0填充
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME') # 第五层:全连接层
fc1_weights = tf.get_variable("fc1_weights", [7 * 7 * 64, 1024],
initializer=tf.truncated_normal_initializer(
stddev=0.1))
# 7*7*64=3136把前一层的输出变成特征向量
fc1_biases = tf.get_variable(
"fc1_biases", [1024], initializer=tf.constant_initializer(0.1))
pool2_vector = tf.reshape(pool2, [-1, 7 * 7 * 64])
fc1 = tf.nn.relu(tf.matmul(pool2_vector, fc1_weights) + fc1_biases) # 为了减少过拟合,加入Dropout层
keep_prob = tf.placeholder(tf.float32)
fc1_dropout = tf.nn.dropout(fc1, keep_prob) # 第六层:全连接层
fc2_weights = tf.get_variable("fc2_weights", [1024, class_num],
initializer=tf.truncated_normal_initializer(
stddev=0.1))
# 神经元节点数1024, 分类节点10
fc2_biases = tf.get_variable(
"fc2_biases", [class_num], initializer=tf.constant_initializer(0.1))
fc2 = tf.matmul(fc1_dropout, fc2_weights) + fc2_biases # 第七层:输出层
# softmax
y_conv = tf.nn.softmax(fc2) # 定义交叉熵损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),
reduction_indices=[1])) # 选择优化器,并让优化器最小化损失函数/收敛, 反向传播
train_step = tf.train.AdamOptimizer(1e-5).minimize(cross_entropy) # tf.argmax()返回的是某一维度上其数据最大所在的索引值,在这里即代表预测值和真实值
# 判断预测值y和真实值y_中最大数的索引是否一致,y的值为1-class_num概率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) # 用平均值来统计测试准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 开始训练
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
acc_train_train = []
acc_train_test = []
batch_size = 64
epoch_train = 50001 # restricted by the hardware in my computer
print("Training steps=" + str(epoch_train))
for i in range(epoch_train):
if (i*batch_size % x_train.shape[0]) > ((i + 1)*batch_size %
x_train.shape[0]):
x_data_train = np.vstack(
(x_train[i*batch_size % x_train.shape[0]:],
x_train[:(i+1)*batch_size % x_train.shape[0]]))
y_data_train = np.vstack(
(y_train[i*batch_size % y_train.shape[0]:],
y_train[:(i+1)*batch_size % y_train.shape[0]]))
x_data_test = np.vstack(
(x_test[i*batch_size % x_test.shape[0]:],
x_test[:(i+1)*batch_size % x_test.shape[0]]))
y_data_test = np.vstack(
(y_test[i*batch_size % y_test.shape[0]:],
y_test[:(i+1)*batch_size % y_test.shape[0]]))
else:
x_data_train = x_train[
i*batch_size % x_train.shape[0]:
(i+1)*batch_size % x_train.shape[0]]
y_data_train = y_train[
i*batch_size % y_train.shape[0]:
(i+1)*batch_size % y_train.shape[0]]
x_data_test = x_test[
i*batch_size % x_test.shape[0]:
(i+1)*batch_size % x_test.shape[0]]
y_data_test = y_test[
i*batch_size % y_test.shape[0]:
(i+1)*batch_size % y_test.shape[0]]
if i % 640 == 0:
train_accuracy = accuracy.eval(
feed_dict={x: x_data_train, y_: y_data_train, keep_prob: 1.0})
test_accuracy = accuracy.eval(
feed_dict={x: x_data_test, y_: y_data_test, keep_prob: 1.0})
print("step {}, training accuracy={}, testing accuracy={}".format(
i, train_accuracy, test_accuracy))
acc_train_train.append(train_accuracy)
acc_train_test.append(test_accuracy)
train_step.run(feed_dict={
x: x_data_train, y_: y_data_train, keep_prob: 0.5})
print("saving model...")
save_path = saver.save(sess, "./my_model/model.ckpt")
print("save model:{0} Finished".format(save_path)) batch_size_test = 64
epoch_test = y_test.shape[0] // batch_size_test + 1
acc_test = 0
for i in range(epoch_test):
if (i*batch_size_test % x_test.shape[0]) > ((i + 1)*batch_size_test %
x_test.shape[0]):
x_data_test = np.vstack((
x_test[i*batch_size_test % x_train.shape[0]:],
x_test[:(i+1)*batch_size_test % x_test.shape[0]]))
y_data_test = np.vstack((
y_test[i*batch_size_test % y_test.shape[0]:],
y_test[:(i+1)*batch_size_test % y_test.shape[0]]))
else:
x_data_test = x_test[
i*batch_size_test % x_test.shape[0]:
(i+1)*batch_size_test % x_test.shape[0]]
y_data_test = y_test[
i*batch_size_test % y_test.shape[0]:
(i+1)*batch_size_test % y_test.shape[0]]
# plt.imshow(x_data_test[0].reshape(28, 28), cmap="gray")
# plt.show()
# Calculate batch loss and accuracy
c = accuracy.eval(feed_dict={
x: x_data_test, y_: y_data_test, keep_prob: 1.0})
acc_test += c / epoch_test
print("{}-th test accuracy={}".format(i, acc_test))
print("At last, test accuracy={}".format(acc_test)) print("Finish!")
return acc_train_train, acc_train_test, acc_test def plot_acc(acc_train_train, acc_train_test, acc_test):
plt.figure(1)
p1, p2 = plt.plot(list(range(len(acc_train_train))),
acc_train_train, 'r>',
list(range(len(acc_train_test))),
acc_train_test, 'b-')
plt.legend(handles=[p1, p2], labels=["training_acc", "testing_acc"])
plt.title("Accuracies During Training")
plt.show() def main():
# integers: 4679
# alphabets: 9796
# Chinese_letters: 3974
# training_set : testing_set == 4 : 1
train_lst = ['alphabets', 'integers', 'alphabets',
'Chinese_letters', 'integers']
acc_train_train, acc_train_test, acc_test = lenet(train_lst)
plot_acc(acc_train_train, acc_train_test, acc_test) if __name__ == '__main__':
main()

Lenet车牌号字符识别+保存模型的更多相关文章

  1. vue实战 - 车牌号校验和银行校验

    在看这篇文章之前,我建议大伙可以去把项目demo拉到本地看看.如果觉得写得不好,可以一起提提issues,一起维护.或者大伙有刚需,可以留言,后期会不断完善. 使用方法: git clone http ...

  2. iOS手机号,身份证,车牌号正则表达式

    1.手机号判断,根据维基百科2016年6月修订的段号判断 是否是手机号 /** 手机号码 13[0-9],14[5|7|9],15[0-3],15[5-9],17[0|1|3|5|6|8],18[0- ...

  3. Android OpenCV集成摄像头图片动态识别车牌号

    最近两天开发一个使用OpenCV集成的一个识别车牌号的项目,困难重重,总结一下相关经验,以及开发注意事项: 一.开发环境: Android Studio 个人版本 3.1.4 NDK下载:14b CM ...

  4. 基于TensorFlow的车牌号识别系统

    简介 过去几周我一直在涉足深度学习领域,尤其是卷积神经网络模型.最近,谷歌围绕街景多位数字识别技术发布了一篇不错的paper.该文章描述了一个用于提取街景门牌号的单个端到端神经网络系统.然后,作者阐述 ...

  5. 【代码笔记】iOS-验证手机号,邮箱,车牌号是否合法

    一,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. ...

  6. 按要求编写Java应用程序。 (1)创建一个叫做机动车的类: 属性:车牌号(String),车速(int),载重量(double) 功能:加速(车速自增)、减速(车速自减)、修改车牌号,查询车的载重量。 编写两个构造方法:一个没有形参,在方法中将车牌号设置“XX1234”,速 度设置为100,载重量设置为100;另一个能为对象的所有属性赋值; (2)创建主类: 在主类中创建两个机动车对象。 创建第

    package com.hanqi.test; public class jidongche { private String chepaihao;//车牌号 private int speed;// ...

  7. Android中手机号、车牌号正则表达式

    手机号 手机号的号段说明转载自:国内手机号码的正则表达式|蜗牛的积累 手机名称有GSM:表示只支持中国联通或者中国移动2G号段(130.131.132.134.135.136.137.138.139. ...

  8. 车牌号对应归属地及城市JSON带简码

    车牌号对应归属地及城市JSON带简码 car_city.json [ { "code": "冀A", "city": "石家庄&q ...

  9. (1)创建一个叫做机动车的类: 属性:车牌号(String),车速(int),载重量(double) 功能:加速(车速自增)、减速(车速自减)、修改车牌号,查询车的载重量。 编写两个构造方法:一个没有形参,在方法中将车牌号设置“XX1234”,速 度设置为100,载重量设置为100;另一个能为对象的所有属性赋值; (2)创建主类: 在主类中创建两个机动车对象。

    package a; public class Jidongche { private String chepaihao; private int chesu; private double zaiz ...

随机推荐

  1. 解决Python内CvCapture视频文件格式不支持问题

    解决Python内CvCapture视频文件格式不支持问题 在读取视频文件调用默认的摄像头cv.VideoCapture(0)会出现下面的视频格式问题 CvCapture_MSMF::initStre ...

  2. 参数模型检验过滤器 .NetCore版

    最近学习 .NETCore3.1,发现过滤器的命名空间有变化. 除此以外一些方法的名称和使用方式也有变动,正好重写一下. 过滤器的命名空间的变化 原先:System.Web.Http.Filters; ...

  3. LVS负载均衡之DR模式原理介绍

    LVS基本原理 流程解释: 当用户向负载均衡调度器(Director Server)发起请求,调度器将请求发往至内核空间 PREROUTING 链首先会接收到用户请求,判断目标 IP 确定是本机 IP ...

  4. Monkey patching

    "A monkey patch is a way to extend or modify the run-time code of dynamic languages without alt ...

  5. LOJ10092半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  6. Prometheus自定义监控内容

    Prometheus自定义监控内容 一.io.micrometer的使用 1.1 Counter 1.2 Gauge 1.3 Timer 1.4 Summary 二.扩展 相关内容原文地址: 博客园: ...

  7. MySql(四)SQL注入

    MySql(四)SQL注入 一.SQL注入简介 1.1 SQL注入流程 1.2 SQL注入的产生过程 1.2.1 构造动态字符串 转义字符处理不当 类型处理不当 查询语句组装不当 错误处理不当 多个提 ...

  8. 单体架构、SOA架构、微服务架构

  9. scala 时间,时间格式转换

    scala 时间,时间格式转换 1.scala 时间格式转换(String.Long.Date) 1.1时间字符类型转Date类型 1.2Long类型转字符类型 1.3时间字符类型转Long类型 2. ...

  10. JavaWeb-tomcat安装(Unsupported major.minor version 51.0/startup.bat闪退)

    JavaWeb-tomcat安装(Unsupported major.minor version 51.0) 一 启动startup.bat 出错i 今天安装tomcat出错,折腾了一下午,收获了许多 ...