CF C.Ivan the Fool and the Probability Theory【思维·构造】
题目大意:
一个$n*m$的网格图,每个格子可以染黑色、白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数
$n,m<=1e5$
分析:
首先,考虑到如果有两个相邻的格子颜色相同,那么这两行/列的格子状态就确定了。比如:

在中间两个爱心格子被确定的情况下,第二列和第三列的涂色情况就已经被确定了。实际上,第一列和第四列涂的颜色也确定了。(最后这句话我们留着待会儿分析)

同理,在中间两个星星确定的时候,第二行和第三行的涂色情况也唯一确定。实际上,第一行和第四列涂的颜色也确定了。
假如说在一个方格中,既有横着出现的两个连续的一样颜色的格子,也有竖着出现的两个连续的一样颜色的格子,就像这样:



那么一定会产生矛盾,无论怎么挪都会产生矛盾。(橙色的部分是既需要用灰色,也需要用蓝色涂的格子,是矛盾的地方)
所以,在一种着色方案中,这种相邻两个颜色一样的情况只会在一个方向中出现,我们只需要考虑一个方向那么多行的方案数,另外一个方向的同理就好。
如果已经确定相邻两个颜色一样的格子出现的方向(为方便讨论,下面我们假设这两个格子是竖着的),那么每一行的格子颜色一定是交错的,两行之间要么一样,要么颜色相反,而且颜色一样的不能连着出现3次及以上。
在第一行确定的情况下,如果要求每一个格子的每个相邻格子的颜色都和他不一样,那么这是一个棋盘染色,就唯一确定了。
但是,按照这道题的条件来说的话,后面的格子可以有两行,也可以只有一行。(就是一次性确定两行或一次性确定一行)
Like this:


设$f[i]$表示铺到第$i$行(前$i$行)的方案总数,那么递推式就是$f[i]=f[i-1]+f[i-2]$
(初始化$f[0]=1$是一开始就是两行连着一样的情况)
答案就是$f[n]$。
然后,还有相邻两个颜色一样的格子是竖着的,方案数就是$f[m]$,这两类在前面已经说过没有交集,答案就是$f[n]+f[m]$
然后,棋盘染色的情况在两种情况中都被计算了,所以答案要减1。
最后,黑白颜色可以反过来,所以乘2.
做完了,$Nice!$
/*
ID: Starry21
*/
#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<map>
#include<algorithm>
using namespace std;
#define N 100005
#define ll long long
#define MOD 1000000007
int n,m;
ll f[N];
int main()
{
scanf("%d %d",&n,&m);
f[]=f[]=;
for(int i=;i<=max(n,m);i++)
f[i]=(f[i-]+f[i-])%MOD;
printf("%lld\n",*((f[n]+f[m])%MOD-+MOD)%MOD);
return ;
}
代码贼短
CF C.Ivan the Fool and the Probability Theory【思维·构造】的更多相关文章
- Codeforces Round #594 (Div. 2) - C. Ivan the Fool and the Probability Theory(思维)
题意:给n*m的网格涂黑白两种颜色,保证每个格子上下左右的四个格子中最多只有一个格子与自己颜色相同,问有多少种涂法?结果$mod1000000007$ 思路:先只考虑一行有多少种涂法 $dp[i][0 ...
- Codeforces Round #594 (Div. 2) C. Ivan the Fool and the Probability Theory (思维,递推)
题意:给你一个\(n\)x\(m\)的矩阵,需要在这些矩阵中涂色,每个格子可以涂成黑色或者白色,一个格子四周最多只能有\(2\)个和它颜色相同的,问最多有多少种涂色方案. 题解:首先我们考虑一维的情况 ...
- Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划
A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...
- CF1239A Ivan the Fool and the Probability Theory
思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...
- Codeforces 1239A. Ivan the Fool and the Probability Theory
传送门 注意到连续两个格子如果有相同颜色那么一路过去的都可以确定 比如一开始染了这两个位置: 然后发现后面整片过去都可以确定: 对于横着的情况也是一样,然后就会发现不可能出现横着两个和竖着两个同时都有 ...
- Codeforces 1248C Ivan the Fool and the Probability Theory(推公式)
题意 一个n*m的网格图,每个格子可以染黑色.白色,问你每个格子最多有一个相邻颜色相同的方案数 n,m<=1e5 思路 我们先处理\(1 \times m\)的情况 设\(f[i][j]\)为前 ...
- Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory
题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...
- C - Ivan the Fool and the Probability Theory---div2
题目连接:https://codeforces.com/contest/1248/problem/C 思路: 注意上下两排的关系,如果说上面那一排有两个方格连续,那么他相邻的两排必定和他相反,如果说当 ...
- 一起啃PRML - 1.2 Probability Theory 概率论
一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...
随机推荐
- java线程中yield(),sleep(),wait()区别详解
1.sleep() 使当前线程(即调用该方法的线程)暂停执行一段时间,让其他线程有机会继续执行,但它并不释放对象锁.也就是说如果有synchronized同步快,其他线程仍然不能访问共享数据.注意该方 ...
- mongodb 导入json文件遇到的坑
使用mongoimport命令导入外部json文件时,发现一直报错 报错结果如下: json数据格式完全正确如下: 经过再三确认格式最终找到解决方案,原来用cmd导入数据时json { }包含的数据 ...
- Mongo mongoexport/mongoimport介绍
一.Mongoexport导出数据 1,导出json数据 mongoexport -d db -c collection -o save-file.dat 2,导出CSV数据 mongoexport ...
- PHP的输出语法
一.echo 只能输出标量数据类型,对于任何数据都可以转为字符串输出 echo是PHP的一种特殊的'指令',不一定要像函数的那样()去使用,可以直接紧跟一个空格输出信息,可以是多个参数 <?ph ...
- Ubuntu 下python开发环境的搭建
一.安装python3 ubuntu自身是安装python2的,例如在ubuntu 16.04中安装的就是python2.7.但我想在python3的环境下进行开发所以就要安装python3.但由于u ...
- Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)
Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...
- Django系列(一):前期准备
1.web应用 Web应用程序是一种可以通过web访问的应用程序,程序的最大好处是用户很容易访问应用程序,用户只需要有浏览器即可,不需要再安装其他软件.应用程序有两种模式C/S.B/S.C/S是客户端 ...
- MongoDB之安装部署
一.安装MongoDB 在安装MongoDB之前,应该先把MongoDB官方网站上下载下来,下载的地址如下: https://www.mongodb.com/download-center 下载完毕之 ...
- mysql授权访问数据库
授权给mysql权限 将所有的权限赋值给某个用户 grant all privileges on *.* to username@"%" identified by 'passwo ...
- selenium鼠标下滑操作
# coding = utf-8 import time from selenium import webdriver from selenium.webdriver.common.by import ...