redis分布式映射算法
redis分布式映射算法
一致性Hash算法的原理和实现
为了解决分布式系统中的负载均衡的问题
背景问题
有N台服务器提供缓存服务,需要对服务器进行负载均衡,将请求平均发到每台服务器上,每台服务器负载1/N的服务
硬Hash映射:
将每台服务器结点进行编号,0到N-1,Key%N就是映射到的服务器结点编号
硬Hash映射存在的问题
当分布式系统中服务器结点个数N变化的时候,每个Key对应的服务器结点的映射关系都要被改变,这会导致大量的Key会被重定向到不同的服务器结点上从而造成大量的缓存不命中,这种情况在分布式系统中是非常糟糕的,这个就是所谓的缓存雪崩,当这种情况发生时,服务器的数据库会存在非常大的压力,很可能会直接宕机
怎么解决硬Hash映射存在的问题?
一致性Hash算法
一致性Hash算法
原理:
将整个Hash空间组织2成一个虚拟的圆环,假设某个哈希函数H的值的空间为0到2的32次方减一,即hash值是一个32位的无符号整型数,整个Hash空间环如下:

下一步将各个服务器结点使用H哈希函数进行哈希映射,具体可以选择服务器的IP或者主机名作为关键字进行映射,这样每台服务器就能确定其在Hash空间上的位置,比如下图:

接下来我们将数据对象映射到Hash空间环上,假设我们有A,B,C,D四个数据对象,他们的Hash空间环上的位置如下:

接下来就是怎么把数据对象映射到服务器结点的问题,映射规则:每个数据对象顺时针遇到的第一个服务器结点就是映射到的服务器结点,根据一致性Hash算法:A会被映射到服务结点1,D会被映射到服务器结点3,BC会被映射到服务器结点2
那一致性Hash算法的优势到底在哪里呢?
我们现在假设两种情况 :
情况1:服务器3宕机了,不可用了

这种情况下,A还是映射到服务结点1,BC还是映射到服务结点2,因为服务器结点3宕机了,数据对象D无法映射到服务器结点3,根据我们的映像规则:数据对象D也映射到服务器结点2,我们可以发现当服务器结点3宕机的时候,影响到的数据对象只有服务器3和服务器1之间的数据对象,也就是数据对象D,对比硬Hash映射:当服务器结点N变化的时候,采用一致性Hash算法影响到的数据对象更少,也就是很多的映射关系对象都不用改变,不会造成缓存雪崩
情况2:新增一个服务器结点4

这种情况下,映射关系被改变的只有数据对象B,即新增服务器结点3和服务器结点3之间的数据对象(新增服务器结点逆时针遇到的第一个服务器结点)
这样情况下,当服务器结点数量N变化的时候,被影响的数据对象也很少,所以一致性Hash算法确实是有用的
当然有一种特殊情况需要我们考虑一下:

这种情况容易造成数据对象大大部分映射到服务器结点1的问题(数据倾斜问题),这样服务器结点1压力很大,而服务2却很空闲
那怎么解决这种问题呢?
采用虚拟结点的方式,即对每一个服务器结点计算多个Hash值,每个计算结果位置都放置一个服务器结点,叫做虚拟结点,具体可以在服务器IP或者主机名后面增加编号实现,比如下图:

这样数据对象倾斜问题将会得到有效的解决
redis分布式映射算法的更多相关文章
- 一致性Hash算法的原理与实现(分布式映射算法)
一致性Hash算法解决的问题: 解决分布式系统中的负载均衡问题 背景问题:有N台服务器提供缓存服务,需要对服务器进行负载均衡,将请求平均发到每台服务器上,每台服务器负载1/N的服务 硬Hash映射:将 ...
- Redlock(redis分布式锁)原理分析
Redlock:全名叫做 Redis Distributed Lock;即使用redis实现的分布式锁: 使用场景:多个服务间保证同一时刻同一时间段内同一用户只能有一个请求(防止关键业务出现并发攻击) ...
- 一致性Hash算法在Redis分布式中的使用
由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢? ...
- Redis分布式部署,一致性hash
一致性哈希 由于hash算法结果一般为unsigned int型,因此对于hash函数的结果应该均匀分布在[0,2^32-1]区间,如果我们把一个圆环用2^32 个点来进行均匀切割,首先按照hash( ...
- Redis分布式篇
Redis分布式篇 1 为什么 需要 Redis 集群 1.1 为什么需要集群? 1.1.1 性能 Redis 本身的 QPS 已经很高了,但是如果在一些并发量非常高的情况下,性能还是会受到影响. ...
- 分布式均匀算法--hash性一致算法--hash slot(转)
目录 1.redis cluster介绍 2.最老土的hash算法和弊端(大量缓存重建) 3.一致性hash算法(自动缓存迁移)+虚拟节点(自动负载均衡) 不用遍历 --> hash算 ...
- 一文读懂 Redis 分布式部署方案
为什么要分布式 Redis是一款开源的基于内存的K-V型数据库,因为内存访问速度快,一般被用来做系统的缓存. Redis作为单机部署能够支持业务简单,数据量不大的系统需求,但在实际应用中,一旦系统规模 ...
- Redis分布式锁 (图解-秒懂-史上最全)
文章很长,而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三 ...
- Redis分布式缓存剖析及大厂面试精髓v6.2.6
概述 官方说明 Redis官网 https://redis.io/ 最新版本6.2.6 Redis中文官网 http://www.redis.cn/ 不过中文官网的同步更新维护相对要滞后不少时间,但对 ...
随机推荐
- Acwing-286-选课(树上DP)
链接: https://www.acwing.com/problem/content/288/ 题意: 学校实行学分制. 每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分. 学校开设了 N ...
- react-native-pg-style使用方法(以最简单的方式编写样式代码,抛弃react-native标准的样式创建方式.)
react-native-pg-style 以最简单的方式编写样式代码,抛弃react-native标准的样式创建方式. 看大家写的源码中都是按照react-native标准的样式创建方式来写样式代码 ...
- Easily use UUIDs in Laravel
Easily use UUIDs in Laravel Wilbur PoweryOct 29 '18 Updated on Oct 30, 2018 ・1 min read #php #larav ...
- 【CUDA 基础】5.0 共享内存和常量内存
title: [CUDA 基础]5.0 共享内存和常量内存 categories: - CUDA - Freshman tags: - 共享内存 - 常量内存 toc: true date: 2018 ...
- python实现 单链表的翻转
#!/usr/bin/env python #coding = utf-8 class Node: def __init__(self,data=None,next = None): self.dat ...
- 5.使用Ribbon实现客户端侧负载均衡
Ribbon实现客户端侧负载均衡 5.1. Ribbon简介 Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法 ...
- python struct的使用例子
import struct i = 1024 # s0为一个字符串,长度为4,即占四个字节,这样方便传输与保存二进制数据. s0 = struct.pack(">I", i) ...
- 实例分析jdom和dom4j的使用和区别 (转)
实例分析jdom和dom4j的使用和区别 对于xml的解析和生成,我们在实际应用中用的比较多的是JDOM和DOM4J,下面通过例子来分析两者的区别(在这里我就不详细讲解怎么具体解析xml,如果对于 ...
- Linux设备驱动程序 之 并发及其管理
竞态产生 Linux系统找那个存在大量的并发联系,因此会导致可能的竞态: 1. 正在运行的用户空间进程可以以多种组合方式访问我们的代码: 2. SMP系统甚至可以再不同的处理器上同时执行我们的代码: ...
- 将蓝牙rssi(信号强度)转换成距离
遇到一个问题,是将蓝牙rssi(信号强度)转换成距离的问题. 这一问题没有准确的解决办法,但是有人做过一个拟合回归函数,其变化规律比较类似于rssi的变化规律,函数如下: d = ^(abs(rssi ...