luogu P3645 [APIO2015]雅加达的摩天楼
暴力?
暴力!
这个题有点像最短路,所以设\(f_{i,j}\)表示在\(i\)号楼,当前\(doge\)跳跃能力为\(j\)的最短步数,转移要么跳一步到\(f_{i+j,j}\)和\(f_{i-j,j}\),要么换到别的\(doge\),转移到\(f_{i,k}\)
这看似有\(n^2\)的状态,实际上状态数只有\(n\sqrt n\).因为当\(p> \sqrt n\)时,一个\(doge\)只能跳到\(\sqrt n\)个不同的点,这部分为\(m\sqrt n\);当\(p\le \sqrt n\)时,因为\(j\le \sqrt n\),所以总状态数为\(n \sqrt n\).然后是边数,边权只有0/1两种,1边每个状态最多两个,然后0边(也就是换一个\(doge\)),显然对于每个\(i\)只用在\(f_{i,j}\)最小的状态转移更优,所以转移总数也是\(n\sqrt n\)的
实现的话可以用双端队列实现0/1最短路.另外还需要判断一个状态是否访问过,\(30000*30000\)的\(bool\)数组开不下,所以可以\(bitset\)
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=30000+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
bitset<N> v[N];
int n,m,ps,ans=1<<30;
vector<int> dog[N];
struct node
{
int x,j,d;
};
deque<node> q;
int main()
{
n=rd(),m=rd();
int b=rd()+1,p=rd();
v[b][p]=1,q.push_front((node){b,p,0});
for(int i=1;i<m;++i)
{
b=rd()+1,p=rd();
if(i==1) ps=b;
dog[b].push_back(p);
}
while(!q.empty())
{
int x=q.front().x,j=q.front().j,d=q.front().d;
q.pop_front();
if(x==ps) ans=min(ans,d);
vector<int>::iterator it;
for(it=dog[x].begin();it!=dog[x].end();++it)
{
int y=*it;
if(!v[x][y]) v[x][y]=1,q.push_front((node){x,y,d});
}
dog[x].clear();
if(x-j>=1&&!v[x-j][j]) v[x-j][j]=1,q.push_back((node){x-j,j,d+1});
if(x+j<=n&&!v[x+j][j]) v[x+j][j]=1,q.push_back((node){x+j,j,d+1});
}
printf("%d\n",ans<(1<<30)?ans:-1);
return 0;
}
luogu P3645 [APIO2015]雅加达的摩天楼的更多相关文章
- luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治
LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...
- 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)
[题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...
- 洛谷P3645 [APIO2015]雅加达的摩天楼
题目描述 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N − 1.除了这 NN 座摩天楼外,雅加达市没有其他摩天楼. 有 M 只叫做 “doge” 的神 ...
- 洛咕 P3645 [APIO2015]雅加达的摩天楼
暴力连边可以每个bi向i+kdi连边权是k的边. 考虑这样的优化: 然后发现显然是不行的,因为可能还没有走到一个dog的建筑物就走了这个dog的边. 然后就有一个很妙的方法--建一个新的图,和原图分开 ...
- 洛谷P3645 [APIO2015]雅加达的摩天楼(最短路+分块)
传送门 这最短路的建图怎么和网络流一样玄学…… 一个最朴素的想法是从每一个点向它能到达的所有点连边,边权为跳的次数,然后跑最短路(然而边数是$O(n^2)$除非自创复杂度比spfa和dijkstra还 ...
- 洛谷$P3645\ [APIO2015]$雅加达的摩天楼 最短路
正解:最短路 解题报告: 传送门$QwQ$ 考虑暴力连边,发现最多有$n^2$条边.于是考虑分块 对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义? ...
- bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图
[Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 644 Solved: 238[Submit][Status][D ...
- 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路
[BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...
- BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路
4070: [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 464 Solved: 164[Submit][Sta ...
随机推荐
- ShockUtil振动工具类
import android.app.Activity; import android.app.Service; import android.content.Context; import andr ...
- js 操作select和option常见用法
1.获取选中select的value和text,html <select id="mySelect"> <option value="1"&g ...
- Intel64及IA-32架构优化指南第8章多核与超线程技术——8.9 其它共享资源的优化
8.9 其它共享资源的优化 在多线程应用中的资源优化依赖于处理器拓扑层级内相关联的Cache拓扑以及执行资源.在第7章中讨论了处理器拓扑以及标识处理器拓扑的一种软件算法. 在带有共享总线的平台中,总线 ...
- JAVA 基础编程练习题3 【程序 3 水仙花数】
3 [程序 3 水仙花数] 题目:打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例 如:153 是一个"水仙 ...
- 等待数据库引擎恢复句柄失败 SqlServer2012安装时报错 Win10
上周,在一批Win10系统电脑上安装SqlServer 2012时,屡次发生报错,安装失败,显示的失败信息是:等待数据库引擎恢复句柄失败 如下图所示: 面对这样的错误,我的第一反应是百度,在百度上找了 ...
- Swift 3.0 闭包的定义和使用
// // ViewController.swift // 闭包的定义和使用 // // Created by 思 彭 on 16/9/17. // Copyright © 2016年 思 彭. Al ...
- JavaScript中函数文档注释
/** 方法说明 * @method 方法名 * @for 所属类名 * @param{参数类型}参数名 参数说明 * @return {返回值类型} 返回值说明 */
- ASP.NET Core 入门笔记9,ASP.NET Core + Entity Framework Core 数据访问入门
一.前言 1.本教程主要内容 ASP.NET Core MVC 集成 EF Core 介绍&操作步骤 ASP.NET Core MVC 使用 EF Core + Linq to Entity ...
- 解决windows server 2019远程桌面许可证问题
解决远程桌面许可证问题,你的远程桌面许可证出现问题,你的会话将在60分钟后断开. 最近装了台windows server 2019服务器做远程桌面连接,也安装了远程桌面许可证,但客户端远程连接时出现你 ...
- 【图像处理】FFmpeg解码H264及swscale缩放详解
http://blog.csdn.net/gubenpeiyuan/article/details/19548019 主题 FFmpeg 本文概要: 本文介绍著名开源音视频编解码库ffmpeg如何 ...