luogu

暴力?

暴力!

这个题有点像最短路,所以设\(f_{i,j}\)表示在\(i\)号楼,当前\(doge\)跳跃能力为\(j\)的最短步数,转移要么跳一步到\(f_{i+j,j}\)和\(f_{i-j,j}\),要么换到别的\(doge\),转移到\(f_{i,k}\)

这看似有\(n^2\)的状态,实际上状态数只有\(n\sqrt n\).因为当\(p> \sqrt n\)时,一个\(doge\)只能跳到\(\sqrt n\)个不同的点,这部分为\(m\sqrt n\);当\(p\le \sqrt n\)时,因为\(j\le \sqrt n\),所以总状态数为\(n \sqrt n\).然后是边数,边权只有0/1两种,1边每个状态最多两个,然后0边(也就是换一个\(doge\)),显然对于每个\(i\)只用在\(f_{i,j}\)最小的状态转移更优,所以转移总数也是\(n\sqrt n\)的

实现的话可以用双端队列实现0/1最短路.另外还需要判断一个状态是否访问过,\(30000*30000\)的\(bool\)数组开不下,所以可以\(bitset\)

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=30000+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
bitset<N> v[N];
int n,m,ps,ans=1<<30;
vector<int> dog[N];
struct node
{
int x,j,d;
};
deque<node> q; int main()
{
n=rd(),m=rd();
int b=rd()+1,p=rd();
v[b][p]=1,q.push_front((node){b,p,0});
for(int i=1;i<m;++i)
{
b=rd()+1,p=rd();
if(i==1) ps=b;
dog[b].push_back(p);
}
while(!q.empty())
{
int x=q.front().x,j=q.front().j,d=q.front().d;
q.pop_front();
if(x==ps) ans=min(ans,d);
vector<int>::iterator it;
for(it=dog[x].begin();it!=dog[x].end();++it)
{
int y=*it;
if(!v[x][y]) v[x][y]=1,q.push_front((node){x,y,d});
}
dog[x].clear();
if(x-j>=1&&!v[x-j][j]) v[x-j][j]=1,q.push_back((node){x-j,j,d+1});
if(x+j<=n&&!v[x+j][j]) v[x+j][j]=1,q.push_back((node){x+j,j,d+1});
}
printf("%d\n",ans<(1<<30)?ans:-1);
return 0;
}

luogu P3645 [APIO2015]雅加达的摩天楼的更多相关文章

  1. luogu P3645 [APIO2015]雅加达的摩天楼 分块 根号分治

    LINK:雅加达的摩天楼 容易想到设\(f_{i,j}\)表示第i个\(doge\)在第j层楼的最小步数. 转移显然是bfs.值得一提的是把初始某层的\(doge\)加入队列 然后转移边权全为1不需要 ...

  2. 【题解】P3645 [APIO2015]雅加达的摩天楼(分层图最短路)

    [题解]P3645 [APIO2015]雅加达的摩天楼(分层图最短路) 感觉分层图是个很灵活的东西 直接连边的话,边数是\(O(n^2)\)的过不去 然而我们有一个优化的办法,可以建一个新图\(G=( ...

  3. 洛谷P3645 [APIO2015]雅加达的摩天楼

    题目描述 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N − 1.除了这 NN 座摩天楼外,雅加达市没有其他摩天楼. 有 M 只叫做 “doge” 的神 ...

  4. 洛咕 P3645 [APIO2015]雅加达的摩天楼

    暴力连边可以每个bi向i+kdi连边权是k的边. 考虑这样的优化: 然后发现显然是不行的,因为可能还没有走到一个dog的建筑物就走了这个dog的边. 然后就有一个很妙的方法--建一个新的图,和原图分开 ...

  5. 洛谷P3645 [APIO2015]雅加达的摩天楼(最短路+分块)

    传送门 这最短路的建图怎么和网络流一样玄学…… 一个最朴素的想法是从每一个点向它能到达的所有点连边,边权为跳的次数,然后跑最短路(然而边数是$O(n^2)$除非自创复杂度比spfa和dijkstra还 ...

  6. 洛谷$P3645\ [APIO2015]$雅加达的摩天楼 最短路

    正解:最短路 解题报告: 传送门$QwQ$ 考虑暴力连边,发现最多有$n^2$条边.于是考虑分块 对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义? ...

  7. bzoj 4070 [Apio2015]雅加达的摩天楼 Dijkstra+建图

    [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 644  Solved: 238[Submit][Status][D ...

  8. 【BZOJ4070】[Apio2015]雅加达的摩天楼 set+最短路

    [BZOJ4070][Apio2015]雅加达的摩天楼 Description 印尼首都雅加达市有 N 座摩天楼,它们排列成一条直线,我们从左到右依次将它们编号为 0 到 N−1.除了这 N 座摩天楼 ...

  9. BZOJ 4070:[APIO2015]雅加达的摩天楼 最短路

    4070: [Apio2015]雅加达的摩天楼 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 164[Submit][Sta ...

随机推荐

  1. 简易总结react-hook三大基础

    react-hook的最重要的三大基础 import { useEffect, useState, useContext } from 'react' 1.每一个简单的一句话总结 useEffect ...

  2. sed与awk

    sed 格式 sed 选项 控制命令 文件或标准输入 sed 流程: (循环打印) sed是将文件里的每一行读入模式空间进行操作, sed选项 -r 支持正则表达 -n 取消默认打印 清空当前模式空间 ...

  3. 用key管理可复用元素

    先看看不用key管理可复用元素的代码.Vue 会尽可能高效地渲染元素,通常会复用已有元素而不是从头开始渲染.这么做,除了使 Vue 变得非常快之外,还有一些有用的好处,那就是在切换input时不会清楚 ...

  4. eclipse syso 自动补全设置方法

    eclipse syso 自动补全设置方法   转  https://blog.csdn.net/sinat_23536373/article/details/76512390   经常遇到打”sys ...

  5. 64位win10系统无法安装.Net framework3.5的解决方法,提示无法连接internet

    1)网上有很多办法但是无法解决 2)控制面板>>疑难解答>>系统和安全性>>使用window更新解决问题 再次执行安装即可

  6. 1.ini读写操作

    一.使用 TIniFile implementationvar  ini:tinifile;  path:string;       {ini文件路径}  section,key:string;{表示 ...

  7. Linux CentOS汉化系统

    u root切换为root用户 写入环境变量 echo "export LANG="zh_CN.UTF8"">>/etc/profile sourc ...

  8. 基于Scrapy框架的增量式爬虫

    概述 概念:监测 核心技术:去重 基于 redis 的一个去重 适合使用增量式的网站: 基于深度爬取的 对爬取过的页面url进行一个记录(记录表) 基于非深度爬取的 记录表:爬取过的数据对应的数据指纹 ...

  9. Vue+element 需要用到拖拽组件 vuedraggable

    新需求是要求界面上的14个可以拖拽,点击保存之后保存拖拽之后的顺序. 确定需求之后肯定第一时间是百度,发现有个插件vuedragger拖拽,按照教程就懵懂的开始了. 官方示例:https://davi ...

  10. 写linux脚本你怎么能不知道位置参数!?

    在写shell脚本的时候,我们经常会手动设置参数,然后对我们的输入的这些参数进行处理和分析,那么这个东东到底值怎么使用的呢? 1.$n $0代表命令本身,$1-9代表接受的第1-9个参数,10以上需要 ...