【题解】Matrix BZOJ 4128 矩阵求逆 离散对数 大步小步算法
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128
大水题一道
使用大步小步算法,把数字的运算换成矩阵的运算就好了
矩阵求逆?这么基础的线代算法我也不想多说,还是自行百度吧
需要注意的是矩阵没有交换律,所以在计算$B\cdot A^{-m}$的时候不要把顺序搞混
代码:
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <map>
#include <cmath> using namespace std;
const int MAXN = ; int n, p; struct Matrix {
int a[MAXN][MAXN];
int *operator[]( int idx ) {
return a[idx];
}
const int *operator[]( int idx ) const {
return a[idx];
}
bool operator<( const Matrix &rhs ) const { // 用于map
for( int i = ; i < n; ++i )
for( int j = ; j < n; ++j )
if( a[i][j] < rhs[i][j] ) return true;
else if( a[i][j] > rhs[i][j] ) return false;
return false;
}
void unit() { // 填成n阶单位矩阵
memset( a, , sizeof(a) );
for( int i = ; i < n; ++i ) a[i][i] = ;
}
void clear() { // 填成全0
memset( a, , sizeof(a) );
}
};
Matrix A, B; // 题目中给定的A,B矩阵 int pow_mod( int a, int b ) { // 整数快速幂
int ans = ;
while(b) {
if( b& ) ans = ans * a % p;
a = a * a % p;
b >>= ;
}
return ans;
}
int inv( int a ) { // 整数求逆
return pow_mod(a,p-);
}
void input_matrix( Matrix &A ) {
for( int i = ; i < n; ++i )
for( int j = ; j < n; ++j ) {
scanf( "%d", &A[i][j] );
A[i][j] %= p;
}
}
void mul( const Matrix &A, const Matrix &B, Matrix &C ) { // 矩阵乘法,结果存入C
Matrix tmp; tmp.clear();
for( int i = ; i < n; ++i )
for( int j = ; j < n; ++j )
for( int k = ; k < n; ++k )
tmp[i][j] = (tmp[i][j] + A[i][k] * B[k][j] % p) % p;
C = tmp;
}
void gauss_jordan( int A[MAXN][MAXN<<] ) { // 高斯约当消元求逆
for( int i = ; i < n; ++i ) {
int r;
for( r = i; r < n; ++r )
if( A[r][i] ) break;
if( r != i )
for( int j = i; j < (n<<); ++j )
swap( A[r][j], A[i][j] );
int iv = inv( A[i][i] );
for( int j = i; j < (n<<); ++j )
A[i][j] = A[i][j] * iv % p;
for( int j = ; j < n; ++j )
if( j != i && A[j][i] ) {
int tmp = (p - A[j][i]) % p;
for( int k = i; k < (n<<); ++k )
A[j][k] = (A[j][k] + A[i][k] * tmp % p) % p;
}
}
}
void inv( const Matrix &A, Matrix &B ) { // 矩阵求逆,结果存入B
int tmp[MAXN][MAXN<<] = {};
for( int i = ; i < n; ++i )
for( int j = ; j < n; ++j )
tmp[i][j] = A[i][j];
for( int i = ; i < n; ++i ) tmp[i][i+n] = ;
gauss_jordan(tmp);
for( int i = ; i < n; ++i )
for( int j = ; j < n; ++j )
B[i][j] = tmp[i][j+n];
} map<Matrix,int> mp;
int bsgs( Matrix A, Matrix B ) { // 大步小步算法
int m = sqrt(p)+;
Matrix E; E.unit();
for( int i = ; i < m; ++i ) {
if( !mp.count(E) ) mp[E] = i;
mul(E,A,E);
}
inv(E,E);
for( int i = ; i < p; i += m ) {
if( mp.count(B) ) return i + mp[B];
mul(B,E,B); // 注意矩阵乘法顺序
}
return -;
} int main() {
scanf( "%d%d", &n, &p );
input_matrix(A), input_matrix(B);
printf( "%d\n", bsgs(A,B) );
return ;
}
【题解】Matrix BZOJ 4128 矩阵求逆 离散对数 大步小步算法的更多相关文章
- 离散对数&&大步小步算法及扩展
bsgs algorithm ax≡b(mod n) 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m)=1时才可以用 原理 此处讨论n为素数的时候. ax≡b(mod n)(n为素数) 由 ...
- UVA 11916 Emoogle Grid 离散对数 大步小步算法
LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <mat ...
- 离散对数及其拓展 大步小步算法 BSGS
离散对数及其拓展 离散对数是在群Zp∗Z_{p}^{*}Zp∗而言的,其中ppp是素数.即在在群Zp∗Z_{p}^{*}Zp∗内,aaa是生成元,求关于xxx的方程ax=ba^x=bax=b的解, ...
- [模板]大步小步算法——BSGS算法
大步小步算法用于解决:已知A, B, C,求X使得 A^x = B (mod C) 成立. 我们令x = im - j | m = ceil(sqrt(C)), i = [1, m], j = [0, ...
- 大步小步算法模板题, poj2417
大步小步模板 (hash稍微有一点麻烦, poj不支持C++11略坑) #include <iostream> #include <vector> #include <c ...
- bzoj 4128 矩阵求逆
/************************************************************** Problem: 4128 User: idy002 Language: ...
- BSGS-Junior·大步小步算法
本文原载于:http://www.orchidany.cf/2019/02/06/BSGS-junior/#more \(\rm{0x01}\) \(\mathcal{Preface}\) \(\rm ...
- [BSGS]大步小步算法
问题 BSGS被用于求解离散对数,即同余方程: \[ A^x\equiv B\pmod{P} \] 求\(x\)的最小非负整数解. 保证\(A\perp P\)(互质). 分析 首先,我们根据费马小定 ...
- BSGS算法(大步小步算法)
计算\(y^x ≡ z \ mod\ p\) 中 \(x\) 的解. 这个模板是最小化了\(x\) , 无解输出\(No \ Solution!\) map<ll,ll>data; ll ...
随机推荐
- Android开发-API指南-<permission>
<permission> 英文原文:http://developer.android.com/guide/topics/manifest/permission-element.html 采 ...
- Linux的基础预备知识
Linux下一切皆文件 1.root@mk-virtual-machine:/home/mk# root:该位置表示当前终端登录的用户名 mk-virtual-machine:/home/m ...
- Thunder团队第五周 - Scrum会议5
Scrum会议5 小组名称:Thunder 项目名称:i阅app Scrum Master:翟宇豪 工作照片: 杨梓瑞同学在拍照,所以不在照片内. 参会成员: 王航:http://www.cnblog ...
- 异常--try..catch
class Program { static void Main(string[] args) { try { object obj = null; int N = (int)obj; } catch ...
- tomcat执行shutdown.sh进程残留的解决办法
我们执行shutdown.sh指令的时候有时会发现进程并没有被关掉而是越来越多,这种情况一般是项目造成的,具体原因未去调查.由于tomcat自己有相应的保护机制,所以我们只需要强制结束其进程即可,下面 ...
- Delphi实现在数据库中存取图像
向窗体上添加一个TListBox组件.一个TImage组件和一个TTable组件,设计完成的主界面如图1所示. 图1 主界面 本系统中需要设计一个新的基于Paradox 7的数据库Image.db,图 ...
- sql语句中的insert 和 insert into 的区别?into有什么用?
insert into tableName values(........) insert tableName (字段名1,字段名2,...)values(......)看语句结构就知道区别了 .in ...
- RT-thread 设备驱动组件之PIN设备
在RT-thread 2.0.0正式版中引入了pin设备作为杂类设备,其设备驱动文件pin.c在rt-thread-2.0.1\components\drivers\misc中,主要用于操作芯片GPI ...
- 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...
- 计蒜客 17417 Highest Tower(思维+图论)
题解: 实际上一个可行解即选取长和宽的一个,使得最后每一组选第一维的数值都不同 在此基础上,使得另一维的和最大. 然后建立图论模型 对于每一个方块,在a和b之间连边. 对于选择的方案,如果选择a-&g ...