bzoj 2956: 模积和 ——数论
Description
Input
第一行两个数n,m。
Output
一个整数表示答案mod 19940417的值
Sample Input
Sample Output
样例说明
答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) +
数据规模和约定
对于100%的数据n,m<=10^9。
$这道题\space 就很复杂QAQ$
$我们先不考虑 i==j 的情况 $
$题目等价于 \sum _{i=1} ^n n-\lfloor \frac{n}{i} \rfloor*i$
$可以转换为 n^2-\sum _{i=1} ^n \lfloor \frac{n}{i} \rfloor*i$
$现在我们可以来考虑i==j的情况了 $
$这个东西我们可以变成 \sum_{i=1}^ {k=min(n,m)} (n-\lfloor \frac{n}{i} \rfloor *i)*(m-\lfloor \frac{m}{i} \rfloor)$
$我们可以把他拆出来$
$变成k*n*m-m\sum_{i=1}^k \lfloor \frac{n}{i} \rfloor*i-n\sum_{i=1}^k \lfloor \frac{m}{i} \rfloor*i + \sum_{i=1}^k \lfloor \frac{n}{i} \rfloor *\lfloor \frac{m}{i} \rfloor$
$这样就可以AC辣 $
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using std::min;
const int mod=,P=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL n,m;
LL calc(LL n,LL k){
LL ans=;
for(LL L=,R=;L<=k;L=R+) R=min(k,n/(n/L)),ans=(ans+(L+R)*(R-L+)/%mod*(n/L))%mod;
return ans;
}
LL F(LL x){return x*(x+)%mod*(*x+)%mod*P%mod;}
int main(){
n=read(); m=read();
LL ans=(n*n-calc(n,n))%mod*((m*m-calc(m,m))%mod)%mod,k=min(n,m);
ans=(ans-k*n%mod*m)%mod;
ans=(ans+m*calc(n,k))%mod;
ans=(ans+n*calc(m,k))%mod;
for(LL L=,R=,s0=,s1;L<=k;L=R+){
R=min(m/(m/L),n/(n/L));
R=min(R,k);
s1=F(R);
ans=(ans-(n/L)*(m/L)%mod*(s1-s0))%mod;
s0=s1;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}
Tips 求类似 $\sum _{i=1} ^n \lfloor \frac{n}{i} \rfloor*i$
我们可以利用程序内calc的写法就可以辣2333
bzoj 2956: 模积和 ——数论的更多相关文章
- BZOJ 2956 模积和 (数学推导+数论分块)
手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: ht ...
- BZOJ 2956 模积和
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2956 题意:给出n和m.计算: 思路: i64 n,m; i64 cal(i64 m,i ...
- [Bzoj 2956] 模积和 (整除分块)
整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...
- BZOJ 2956 模积和(分块)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1 ...
- 【BZOJ】2956: 模积和
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417\), \((n, m ...
- 【bzoj2956】模积和 数论
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- 【BZOJ】2956:模积和
Time Limit: 10 Sec Memory Limit: 128 MB Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j ...
- 「BZOJ 2956」模积和
「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...
随机推荐
- qwe
这次作业我负责的部分是把爬取完的聊天记录经行数据挖掘以及经行各种普通过滤高级过滤等. 运行截图如下: 数据分为四部分:账户名.qq/邮箱.包含关键词的发言次数.包含关键词的发言字数. 遇到的困难及解决 ...
- http和https的异同
转自:http://blog.csdn.net/whatday/article/details/38147103 什么是 HTTPS? HTTPS (基于安全套接字层的超文本传输协议 或者是 HTTP ...
- dedecms添加新模型
dedecms虽然预设了一些常见网页的功能模型,但是如果需要新的功能则需要自己创建,dedecms也提供了创建新模型的功能,如下: 1.打开后台首页=>核心=>内容模型管理 2.添加新模型 ...
- BZOJ 1821 部落划分(二分+并查集)
答案是具有单调性的. 因为最近的两个部落的距离为mid,所以要是有两个野人的距离<mid,则他们一定是一个部落的. 用并查集维护各联通块,如果最后的联通块个数>=k,那么mid还可以再小点 ...
- 【bzoj1782】[Usaco2010 Feb]slowdown 慢慢游 树链剖分+线段树
题目描述 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直接连接着牧场, ...
- Java入门之:基本数据类型
Java基本数据类型 变量就是申请内存来存储值,也就是说,当创建变量的时候,需要在内存中申请空间.内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来存储该类型的数据,如下图所示: 因此, ...
- Codeforces Round#516 Div.1 翻车记
A:开场懵逼.然后发现有人1min过,于是就sort了一下,于是就过了.正经证明的话,考虑回文串两端点一定是相同的,所以最多有Σcnti*(cnti+1)/2个,cnti为第i种字母出现次数.而sor ...
- 具体数学数论章-----致敬Kunth
整除性(divisible): 引入了代表整除性. m\n (m|n) 表示m整除n.注意这里的整除.表示的是n = km(k为整数). 在整除性这里.m必须是个正数.也许你可以描述n 是 m 的k倍 ...
- [洛谷P5166]xtq的口令
题目大意:给出一张有向图,保证任何时候边都是从编号大的向编号小连.两个操作: $1\;l\;r:$表示若编号在区间$[l,r]$内的点被染色了,问至少还需要染多少个点才可以使得整张图被染色.一个点会被 ...
- [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]
题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...