Description

1.区间加 \(z\)

2.区间覆盖为 \(z\)

3.查询区间最大值

4.查询区间历史最大值

Solution

线段树维护历史最值,思想大致是维护标记出现过的最大值

考虑这种情况:

\(x\) 点下方标记,会把儿子的标记给覆盖掉,而儿子的儿子如果有了这个标记就会成为最大值,会影响最终结果

那么我们把标记下放的过程中维护的标记取个 \(max\) 再下放就行了

所以维护四个东西,历史最大值 \(nt\),当前最大值\(pt\),历史最大标记\(lap\),当前标记\(lan\)

每个标记用二元组 \((add,replace)\) 来表示

那么把 \(b\) 合并到 \(a\) 上就是: \((a.x+b.x,max(a.y+b.x,b.y))\)

把标记取 \(max\) 实际上把两维分别取 \(max\)

加法操作就是 \((z,-inf)\) ,覆盖操作就是 \((-inf,z)\)

#include<bits/stdc++.h>
#define ls (o<<1)
#define rs (o<<1|1)
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=1e5+10,inf=1e9;
struct data{
int x,y;
data(){}
data(int _x,int _y){x=_x;y=_y;}
inline data operator +(const data &p){
return data(max(x+p.x,-inf),max(y+p.x,p.y));}
inline data operator ^(const data &p){return data(max(x,p.x),max(y,p.y));}
inline bool operator ==(const data &p){return x==p.x&&y==p.y;}
}lan[N*4],lap[N*4],w=data(0,-inf);
int n,Q,nt[N*4],pt[N*4],x,y,z;char s[2];
inline void upd(int o){nt[o]=max(nt[ls],nt[rs]),pt[o]=max(pt[ls],pt[rs]);}
inline void build(int l,int r,int o){
lan[o]=lap[o]=w;
if(l==r){gi(nt[o]);pt[o]=nt[o];return ;}
int mid=(l+r)>>1;
build(l,mid,ls);build(mid+1,r,rs);
upd(o);
}
inline void pushdown(int o){
if(lan[o]==w && lap[o]==w)return ;
for(int i=ls;i<=rs;i++){
lap[i]=lap[i]^(lan[i]+lap[o]);
lan[i]=lan[i]+lan[o];
pt[i]=max(pt[i],max(lap[o].x+nt[i],lap[o].y));
nt[i]=max(nt[i]+lan[o].x,lan[o].y);
}
lan[o]=lap[o]=w;
}
inline void mdf(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se){
data t;
if(s[0]=='P')t=data(z,-inf);
else t=data(-inf,z);
nt[o]=max(nt[o]+t.x,t.y);
pt[o]=max(pt[o],nt[o]);
lan[o]=lan[o]+t;
lap[o]=lap[o]^lan[o];
return ;
}
pushdown(o);
int mid=(l+r)>>1;
if(se<=mid)mdf(l,mid,ls,sa,se);
else if(sa>mid)mdf(mid+1,r,rs,sa,se);
else mdf(l,mid,ls,sa,mid),mdf(mid+1,r,rs,mid+1,se);
upd(o);
}
inline int qry(int l,int r,int o,int sa,int se){
if(sa<=l && r<=se)return s[0]=='Q'?nt[o]:pt[o];
pushdown(o);
int mid=(l+r)>>1;
if(se<=mid)return qry(l,mid,ls,sa,se);
if(sa>mid)return qry(mid+1,r,rs,sa,se);
return max(qry(l,mid,ls,sa,mid),qry(mid+1,r,rs,mid+1,se));
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n;
build(1,n,1);
cin>>Q;
while(Q--){
scanf("%s%d%d",s,&x,&y);
if(s[0]=='Q'||s[0]=='A')printf("%d\n",qry(1,n,1,x,y));
else gi(z),mdf(1,n,1,x,y);
}
return 0;
}

bzoj 3064: Tyvj 1518 CPU监控的更多相关文章

  1. 3064: Tyvj 1518 CPU监控

    注意这题要维护历史最大加和历史最大覆盖 /************************************************************** Problem: 3064 Us ...

  2. [补档][Tyvj 1518]CPU监控

    [Tyvj 1518]CPU监控 题目 Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看 ...

  3. bzoj3064 Tyvj 1518 CPU监控

    Description Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看视频之外,还会做 ...

  4. 【bzoj3064】Tyvj 1518 CPU监控 线段树维护历史最值

    题目描述 给你一个序列,支持4种操作:1.查询区间最大值:2.查询区间历史最大值:3.区间加:4.区间赋值. 输入 第一行一个正整数T,表示Bob需要监视CPU的总时间. 然后第二行给出T个数表示在你 ...

  5. Tyvj 1518 CPU监控(线段树)

    题目描述: Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看视频之外,还会做出去玩玩和用 ...

  6. Tyvj 1518 CPU监控——极恶线段树

    题目大意: 给定一个区间及其各个元素的初值,要求支持如下操作: 1.区间加 2.区间赋值 3.查询区间最大值 4.查询区间历史最大值 分析: 容易想到线段树,但是细思恶极(仔细想想恶心到了极点)的是, ...

  7. BZOJ3064 Tyvj 1518 CPU监控 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3064 题意概括 一个序列,要你支持以下操作: 1. 区间询问最大值 2. 区间询问历史最大值 3. ...

  8. 2018.07.27 bzoj3064: Tyvj 1518 CPU监控(线段树)

    传送门 线段树好题. 维护区间加,区间覆盖,区间最大,区间历史最大. 这个东西在国家集训队2016论文集之<区间最值操作与历史最值问题--杭州学军中学 吉如一>中讲的已经很详细了. 简单来 ...

  9. BZOJ 3064 CPU监控

    题目链接:CPU监控 学习一番线段树的历史标记- 这道题就是区间加法,区间赋值,要询问区间最大值 和 区间历史最大值的最大值. 然后这种题就是在现有标记的基础上多弄一套标记,维护这个点出现过的最大的标 ...

随机推荐

  1. python版本selenium定位方式(不止八种哦)

    除了大家熟知的8种定位方式之外 1.id定位:find_element_by_id(self, id_)2.name定位:find_element_by_name(self, name)3.class ...

  2. BlangenOA项目展示(附源码)

    1. 登录界面 1.1表单校验 1.2信息有误 1.3正在登录   2.桌面 3.用户管理 3.1添加 3.2删除 3.3编辑 3.4设置用户角色 3.5设置用户权限 4.角色管理 5.权限管理(菜单 ...

  3. map的回调函数

    问题:--js   (['1','2','3']).map(parseInt) 第一眼看到这个题目的时候,脑海跳出的答案是 [1, 2, 3],但是真正的答案是[1, NaN, NaN]. 首先让我们 ...

  4. TestNG+Selenium

    是一个开源自动化测试框架.其实类似于JUnit这种单元测试框架,但进行了一些功能扩展 属于selenium?还是说TestNG是一个测试框架,它用到了selenium的web自动化测试的功能,比如使用 ...

  5. 【QTP专题】04_对象及操作方法

    本节介绍知识点包括 1.QTP自动化的原理 2.两类对象:TO(测试对象).RO(运行对象) 3.操作方法:SetTOProperty,GetROProperty,GetTOProperty 1.QT ...

  6. 2015-9-13 NOIP模拟赛解题报告(by hzwer)

    小奇挖矿 「题目背景」 小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值w)的飞船,按既定路线依次飞过喵星系的n个星球. 「问题描述」 星球分为2类:资源型和维修型. 1.资源型:含矿物质量a[i ...

  7. Winfrom 桌面弹窗拦截 关闭进程简易程序 源代码下载

    ***********************2019 2.7更新 v 2.0*************************************************** 程序 源代码 交互 ...

  8. SP16580 QTREE7 - Query on a tree VII(LCT)

    题意翻译 一棵树,每个点初始有个点权和颜色(输入会给你) 0 u:询问所有u,v路径上的最大点权,要满足u,v路径上所有点颜色相同 1 u:反转u的颜色 2 u w:把u的点权改成w 题解 Qtree ...

  9. 剑指offer面试题1---赋值运算符函数

    题目描述:如下类型CMyString的声明,请为该类型添加赋值运算符函数. class CMyString{public:    CMyString(char* pData = NULL);    C ...

  10. codis__简介

    参考文档 https://github.com/wandoulabs/codis 中文简介 https://github.com/wandoulabs/codis/blob/master/doc/tu ...