https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360

The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q​1​​,Q​2​​,⋯,Q​N​​), where Q​i​​ is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

 
Figure 1   Figure 2

Input Specification:

Each input file contains several test cases. The first line gives an integer K (1<K≤200). Then K lines follow, each gives a configuration in the format "N Q​1​​ Q​2​​ ... Q​N​​", where 4≤N≤1000 and it is guaranteed that 1≤Q​i​​≤N for all i=1,⋯,N. The numbers are separated by spaces.

Output Specification:

For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.

Sample Input:

4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4

Sample Output:

YES
NO
NO
YES
时间复杂度:$O(1/2 * n^2)$ 
代码:

#include <bits/stdc++.h>
using namespace std; int N;
int a[1111], line[1111], row[1111]; int main() {
int K;
scanf("%d", &K);
while(K --) {
scanf("%d", &N); for(int i = 1; i <= N; i ++) {
scanf("%d", &a[i]);
} memset(line, 0, sizeof(line));
memset(row, 0, sizeof(row)); for(int i = 1; i <= N; i ++) {
line[a[i]] ++;
row[i] ++;
} bool flag = true;
for(int i = 1; i <= N; i ++) {
if(line[i] != 1 || row[i] != 1)
flag = false;
} for(int i = 2; i <= N; i ++) {
for(int j = 1; j < i; j ++) {
if(abs(a[i] - a[j]) == abs(i - j))
flag = false;
}
} if(flag)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

PAT 甲级 1128 N Queens Puzzle的更多相关文章

  1. PAT甲级 1128. N Queens Puzzle (20)

    1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...

  2. PAT 甲级 1128. N Queens Puzzle (20) 【STL】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1128 思路 可以 对每一个皇后 都判断一下 它的 行,列 ,左右对角线上 有没有皇后 深搜解决 ...

  3. PAT甲级——A1128 N Queens Puzzle【20】

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8 chessboard ...

  4. PAT 1128 N Queens Puzzle

    1128 N Queens Puzzle (20 分)   The "eight queens puzzle" is the problem of placing eight ch ...

  5. PAT 1128 N Queens Puzzle[对角线判断]

    1128 N Queens Puzzle(20 分) The "eight queens puzzle" is the problem of placing eight chess ...

  6. 1128 N Queens Puzzle (20 分)

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8 chessboard ...

  7. PAT甲题题解-1128. N Queens Puzzle (20)-做了一个假的n皇后问题

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789810.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  8. 1128 N Queens Puzzle

    题意:给定一串序列,判断其是否是合法的N皇后方案. 思路:本题是阅读理解题,不是真的N皇后问题.N皇后问题的合法序列要求任意两个皇后不在同一行.同一列,以及不在对角线.本题已经明确不会在同一列,故只需 ...

  9. PAT甲级题解(慢慢刷中)

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6102219.html特别不喜欢那些随便转载别人的原创文章又不给 ...

随机推荐

  1. zkfc的znode不存在的问题

    cd /soft/hadoop/logs/hadoop-centos-zkfc-s101.log发现: 2018-09-29 12:42:03,616 FATAL org.apache.hadoop. ...

  2. Java设计模式(22)——行为模式之状态模式(State)

    一.概述 概念 再引用网友的说通俗一点: State模式在实际使用中比较多,适合"状态的切换".因为我们经常会使用If elseif else 进行状态切换, 如果针对状态的这样判 ...

  3. 宁波Uber优步司机奖励政策(12月21日到12月27日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. 修改Eclipse中项目在Apache Tomcat中的部署路径

    在Eclipse中配项目已经部署到如下默认目录下:eclipse workspace/.metadata/.plugins/org.eclipse.core.resources/.projects. ...

  5. RF上传图片各种失败坑,使用pywin32来操作windows窗体

    这个上传按钮,使用 Choose File,失败不知道为什么... Name:Choose FileSource:Selenium2Library <test library>Argume ...

  6. python基础之变量和简单数据类型

    1.1 变量的命名和使用规范 变量名可以包含数字.字母.下划线,但是不能以数字开头. 变量名不能包含空格,可使用下划线来分割其中的单词. 不要将Python关键字和函数名用作变量名. 变量名应既简短又 ...

  7. 前端开发工程师 - 01.页面制作 - 第1章.Photoshop切图

    第1章--Photoshop切图 工具.面板.视图 什么是切图? 1. 从设计稿(.psd)中切出网络素材,如按钮.图标.logo.背景图等 2. 编写代码,在代码中使用图片,生成静态页面 --给网页 ...

  8. 简单的switch嵌套

    //添加list数据 1 public static void main(String[] args) { List<String> al = new ArrayList<Strin ...

  9. leetcode-组合总数IV(动态规划)

    377. 组合总和 Ⅳ 给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数. 示例: nums = [1, 2, 3] target = 4   所有可能的组合为: (1, ...

  10. leetcode-峰值检测

    寻找峰值     峰值元素是指其值大于左右相邻值的元素. 给定一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引. 数组可能包含多个峰值,在这种情况下,返回 ...