[POJ3107]Godfather
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 7212   Accepted: 2535

Description

Last years Chicago was full of gangster fights and strange murders. The chief of the police got really tired of all these crimes, and decided to arrest the mafia leaders.

Unfortunately, the structure of Chicago mafia is rather complicated. There are n persons known to be related to mafia. The police have traced their activity for some time, and know that some of them are communicating with each other. Based on the data collected, the chief of the police suggests that the mafia hierarchy can be represented as a tree. The head of the mafia, Godfather, is the root of the tree, and if some person is represented by a node in the tree, its direct subordinates are represented by the children of that node. For the purpose of conspiracy the gangsters only communicate with their direct subordinates and their direct master.

Unfortunately, though the police know gangsters’ communications, they do not know who is a master in any pair of communicating persons. Thus they only have an undirected tree of communications, and do not know who Godfather is.

Based on the idea that Godfather wants to have the most possible control over mafia, the chief of the police has made a suggestion that Godfather is such a person that after deleting it from the communications tree the size of the largest remaining connected component is as small as possible. Help the police to find all potential Godfathers and they will arrest them.

Input

The first line of the input file contains n — the number of persons suspected to belong to mafia (2 ≤ n ≤ 50 000). Let them be numbered from 1 to n.

The following n − 1 lines contain two integer numbers each. The pair aibi means that the gangster ai has communicated with the gangster bi. It is guaranteed that the gangsters’ communications form a tree.

Output

Print the numbers of all persons that are suspected to be Godfather. The numbers must be printed in the increasing order, separated by spaces.

Sample Input

6
1 2
2 3
2 5
3 4
3 6

Sample Output

2 3

Source

Northeastern Europe 2005, Northern Subregion
 
题目大意:给你N个节点的无根树,一个节点是"老大"当且仅当删去他后其节点数最大的子树最小。问有那些节点是"老大"。
试题分析:Maxt[i]表示i节点的子树中size最大的
     size[i]表示以i为根的子树的大小。
     易知:size[i]=sum(size[i->son]) 
        Maxt[i]=max(size[i->son])
     那么每个节点答案就是min(Maxt[i],N-size[i])
     最后统计一下输出就好,水题……
 
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=100001;
const int INF=999999;
int N,M;
int Node[MAXN*2],Root[MAXN*2],Next[MAXN*2];
int Maxt[MAXN];
int size[MAXN];
int ans,tmp;
int te[MAXN];
int cnt; void addedge(int u,int v){
++cnt;
Node[cnt]=v;
Next[cnt]=Root[u];
Root[u]=cnt;
return ;
}
void dfs(int x,int fa){
size[x]=1;
for(int i=Root[x];i;i=Next[i]){
int t=Node[i];
if(t==fa) continue;
dfs(t,x); size[x]+=size[t];
}
return ;
}
void dfs2(int x,int fa){
for(int i=Root[x];i;i=Next[i]){
int t=Node[i];
if(t==fa) continue;
dfs2(t,x); Maxt[x]=max(size[t],Maxt[x]);
}
return ;
} int main(){
N=read();
for(int i=1;i<N;i++){
int u=read(),v=read();
addedge(u,v);
addedge(v,u);
}
dfs(1,-1); dfs2(1,-1);ans=INF;
for(int i=1;i<=N;i++){
int t=max(Maxt[i],N-size[i]);
if(ans>t) ans=t;
}
for(int i=1;i<=N;i++){
int t=max(Maxt[i],N-size[i]);
if(ans==t){
te[++tmp]=i;
}
}
for(int i=1;i<=tmp;i++) printf("%d ",te[i]);
}

【树形dp】Godfather的更多相关文章

  1. POJ 3107.Godfather 树形dp

    Godfather Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7536   Accepted: 2659 Descrip ...

  2. POJ 1655 BalanceAct 3107 Godfather (树的重心)(树形DP)

    参考网址:http://blog.csdn.net/acdreamers/article/details/16905653   树的重心的定义: 树的重心也叫树的质心.找到一个点,其所有的子树中最大的 ...

  3. [poj3107/poj2378]Godfather/Tree Cutting树形dp

    题意:求树的重心(删除该点后子树最大的最小) 解题关键:想树的结构,删去某个点后只剩下它的子树和原树-此树所形成的数,然后第一次dp求每个子树的节点个数,第二次dp求解答案即可. 此题一开始一直T,后 ...

  4. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  5. 【转】【DP_树形DP专辑】【9月9最新更新】【from zeroclock's blog】

    树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树.三叉树.静态搜索树.AV ...

  6. 【DP_树形DP专题】题单总结

    转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...

  7. 树形dp总结

    转自 http://blog.csdn.net/angon823 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在"树"的数据结构上的动态规划,平时作的动态规划都是线性的 ...

  8. 树形 DP 总结

    树形 DP 总结 本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在“树 ...

  9. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  10. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

随机推荐

  1. .NET Core Data Access

    .NET Core was released a few months ago, and data access libraries for most databases, both relation ...

  2. bzoj 1483 链表启发式合并

    首先我们可以比较容易的在n的时间内算出来开始的答案,我们维护一些链表,分别表示不同的颜色,那么我们在计算答案的时候,只需要扫一遍所有的链表,判断链表相邻两项是否在序列中相邻,不相邻的话肯定在这其中的一 ...

  3. 中南oj String and Arrays

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?cid=2072&pid=1 Problem B: String and Arrays T ...

  4. Runas replacement tool

    1. RunAsSpc Runas 无法在脚本中输入密码,可以使用RunAsSpc替代. RunAsSpc = runas + password + encryption https://robotr ...

  5. 【Python学习笔记】Coursera之PY4E学习笔记——File

    1.打开文件 使用handle=open(filename,mode)打开文件.这一函数将会返回一个handle(应该翻译为“柄”吧)用来操控文件,参数filename是一个字符串.参数mode是可选 ...

  6. STM32接口FSMC/FMC难点详解

    STM32接口FSMC/FMC难点详解 转载   http://blog.sina.com.cn/s/blog_808bca130102x94k.html STM32F767的FMC将外部存储器划分为 ...

  7. java===java基础学习(6)---流程控制,for,if,switch,continue,break

    注意点: for循环的用法和python截然不同,注意格式 switch~,switch对应的case每当执行完毕都要break,由于基本不怎么用switch,所以作为了解. 中断流程控制语句,请考虑 ...

  8. 【UOJ#9】vfk的数据

    我感觉这题可以出给新高一玩2333 #include<bits/stdc++.h> #define N 10005 using namespace std; string s[N]; in ...

  9. js对页面对float类型的数据格式化处理

    <script>        document.write(parseFloat(<s:property value="assureterm"/>)); ...

  10. 【Spring事务的事务属性】

    大家都知道,Spring的声明式事务是通过事务属性来定义的,而spring的事务属性包含了5个方面:传播行为,隔离级别,是否只读,事务超时,回滚规则: 传播行为 传播行为,是属于事务边界相关的属性,定 ...