求最小权极大线性无关组。

先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优。

据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于一个线性相关组,没有被选上的一定是最大的那个向量,于是解一定最优。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long double ld;
using namespace std; const int N=;
const ld eps=1e-;
int n,m,ans1,ans2;
ld p[N][N]; struct P{ ld p[N]; int v; }a[N];
bool operator <(const P &a,const P &b){ return a.v<b.v; } int main(){
freopen("bzoj4004.in","r",stdin);
freopen("bzoj4004.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) rep(j,,m) scanf("%Lf",&a[i].p[j]);
rep(i,,n) scanf("%d",&a[i].v);
sort(a+,a+n+);
rep(k,,n) rep(i,,m){
if (fabs(a[k].p[i])<eps) continue;
if (fabs(p[i][i])<eps){
rep(j,i,n) p[i][j]=a[k].p[j];
ans1++; ans2+=a[k].v; break;
}
for (int j=m; j>=i; j--) a[k].p[j]-=p[i][j]*a[k].p[i]/p[i][i];
}
printf("%d %d\n",ans1,ans2);
return ;
}

[BZOJ4004][JLOI2015]装备购买(贪心+线性基)的更多相关文章

  1. BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]

    一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...

  2. 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)

    bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...

  3. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  4. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  5. [JLOI2015]装备购买(线性基)

    [JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...

  6. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  7. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

  8. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  9. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

随机推荐

  1. Codeforces Round #482 (Div. 2) B题

    题目链接:http://codeforces.com/contest/979/problem/B B. Treasure Hunt time limit per test1 second memory ...

  2. bzoj 1197 DP

    我们可以将这个问题转化为在n维空间中一共放m个n维球,求这m个球最多将这个空间分为不同的几个部分. 那么我们设w[i][j]代表i为空间放j个球分为的部分,那么w[i][j]=w[i][j-1]+w[ ...

  3. bzoj 1014 splay

    首先我们可以用splay来维护这个字符串,那么对于某两个位置的lcp,维护每个节点的子树的hash,然后二分判断就好了. /************************************** ...

  4. Python模块学习 - Argparse

    argparse模块 在Python中,argparse模块是标准库中用来解析命令行参数的模块,用来替代已经过时的optparse模块.argparse模块能够根据程序中的定义从sys.argv中解析 ...

  5. Yii 1.1.17 四、属性标签、AR类增删改查、使用上传类与扩展第三方类库

    一.属性标签与规则设置 当进入网站页面,将会读数据库返回信息到视图上.那么,现在定义模型中的属性在视图标签上的显示, 也就是模型属性到前台标签的映射 // 定义模型属性到前台标签的映射 public ...

  6. twemproxy 简介、安装配置

    twemproxy 简介.安装配置 http://www.xuchanggang.cn/archives/993.html

  7. mongodb 学习笔记 3 --- 查询

    在mongodb的查询中可以通过使用如下操作符进行深度查询 1.条件操作符 $gt  $gte : >  >=   {"age":{"$gt":18 ...

  8. FineReport——JS二次开发(复选框全选)

    在进行查询结果选择的时候,我们经常会用到复选框控件,对于如何实现复选框全选,基本思路: 在复选框中的初始化事件中把控件加入到一个全局数组里,然后在全选复选框里对数组里的控件进行遍历赋值. 首先,定义两 ...

  9. 1:django models

    重温django model 1:many-to-many 的额外属性 一般情况下,many-to-many直接就可以满足我们的要求,考虑这样一种情况: 音乐家和乐团是many-to-many的关系, ...

  10. .vue,跟小程序文件在sublime里面怎么实现代码格式化

    .vue文件跟小程序的.wxml,.wxss用sublime的HTML/CSS/JS prettify插件也可以实现格式化代码的效果 首先你在sublime要已经安装好了HTML/CSS/JS pre ...