求最小权极大线性无关组。

先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优。

据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于一个线性相关组,没有被选上的一定是最大的那个向量,于是解一定最优。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long double ld;
using namespace std; const int N=;
const ld eps=1e-;
int n,m,ans1,ans2;
ld p[N][N]; struct P{ ld p[N]; int v; }a[N];
bool operator <(const P &a,const P &b){ return a.v<b.v; } int main(){
freopen("bzoj4004.in","r",stdin);
freopen("bzoj4004.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) rep(j,,m) scanf("%Lf",&a[i].p[j]);
rep(i,,n) scanf("%d",&a[i].v);
sort(a+,a+n+);
rep(k,,n) rep(i,,m){
if (fabs(a[k].p[i])<eps) continue;
if (fabs(p[i][i])<eps){
rep(j,i,n) p[i][j]=a[k].p[j];
ans1++; ans2+=a[k].v; break;
}
for (int j=m; j>=i; j--) a[k].p[j]-=p[i][j]*a[k].p[i]/p[i][i];
}
printf("%d %d\n",ans1,ans2);
return ;
}

[BZOJ4004][JLOI2015]装备购买(贪心+线性基)的更多相关文章

  1. BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]

    一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...

  2. 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)

    bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...

  3. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  4. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  5. [JLOI2015]装备购买(线性基)

    [JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...

  6. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  7. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

  8. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  9. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

随机推荐

  1. [BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

    在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... ...

  2. 【游记】NOIP 2017

    时间:2017.11.11~2017.11.12 地点:广东省广州市第六中学 Day1 T1:看到题目,心想这种题目也能放在T1? 这个结论我之前遇到过至少3次,自己也简单证明过.初见是NOIP200 ...

  3. css纯样式导航

    <style>.dropdown {    position: relative;    display: inline-block;} .dropdown-content {    di ...

  4. mysql in/no in/like

    % 任意字符 _ 任意一个字符 in (value,......) 在这里 not in (value,......) 不在这里 mysql> select 'a' not in (1,2,3, ...

  5. 网络设备之分配net_device结构

    注册网络设备时,会调用pci_driver->probe函数,以e100为例,最终会调用alloc_netdev_mqs来分配内存,并且在分配内存后调用setup函数(以太网为ether_set ...

  6. mysql分组取前N记录

    http://blog.csdn.net/acmain_chm/article/details/4126306 http://bbs.csdn.net/topics/390958705 1 我只用到了 ...

  7. 同步方法-java

    除了同步代码块能实现同步执行外,同步方法也可以. 先看下同步代码块实现同步执行: public class Demo4 { public static void main(String[] args) ...

  8. 利用BeanUtils工具类封装表单数据

    一.BeanUtils工具类的使用 1.首先导入BeanUtils工具类的jar包 commons-beanutils-1.8.0.jar commons-logging-1.1.1.jar 2.se ...

  9. css文件放在头部的原因

    我在博问上发的一个这个问题 然后有人这样回复我的 我感觉很有道理的样子 所以我放上来了 这样会先加载css的样式,在渲染dom的时候已经知道了自己的样式了,所以一次渲染成功 如果css放在底部,那么需 ...

  10. C#进行Socket通信编程之一

    关于Socket编程的相关资料(含实例)在网上多如牛毛,而我写这篇文章的初衷仅仅是为了记录自己的一些心得体会. Socket提供了这样一个接口,可以方便地使程序员通过其来发送和接收网络上的数据.在利用 ...