比较巧妙的一道题目,拿到题目就想用暴力直接搜索,仔细分析了下发现复杂度达到了2^n*n! ,明显不行,于是只好往背包上想。 于是又想二分找次数判断可行的方法,但是发现复杂度10^8还是很悬。。。
然后学习了这种背包状压的好思路, 巧妙的转化成了背包的模型。 一道经典的题目!
 
Relocation
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1664   Accepted: 678

Description

Emma and Eric are moving to their new house they bought after returning from their honeymoon. Fortunately, they have a few friends helping them relocate. To move the furniture, they only have two compact cars, which complicates everything a bit. Since the furniture does not fit into the cars, Eric wants to put them on top of the cars. However, both cars only support a certain weight on their roof, so they will have to do several trips to transport everything. The schedule for the move is planed like this:

  1. At their old place, they will put furniture on both cars.
  2. Then, they will drive to their new place with the two cars and carry the furniture upstairs.
  3. Finally, everybody will return to their old place and the process continues until everything is moved to the new place.

Note, that the group is always staying together so that they can have more fun and nobody feels lonely. Since the distance between the houses is quite large, Eric wants to make as few trips as possible.

Given the weights wi of each individual piece of furniture and the capacities C1 and C2 of the two cars, how many trips to the new house does the party have to make to move all the furniture? If a car has capacity C, the sum of the weights of all the furniture it loads for one trip can be at most C.

Input

The first line contains the number of scenarios. Each scenario consists of one line containing three numbers nC1 and C2C1 and C2 are the capacities of the cars (1 ≤ Ci ≤ 100) and n is the number of pieces of furniture (1 ≤ n ≤ 10). The following line will contain n integers w1, …, wn, the weights of the furniture (1 ≤ wi ≤ 100). It is guaranteed that each piece of furniture can be loaded by at least one of the two cars.

Output

The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line with the number of trips to the new house they have to make to move all the furniture. Terminate each scenario with a blank line.

Sample Input

2
6 12 13
3 9 13 3 10 11
7 1 100
1 2 33 50 50 67 98

Sample Output

Scenario #1:
2 Scenario #2:
3

Source

TUD Programming Contest 2006, Darmstadt, Germany
 
 
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <string>
using namespace std;
#define INF 0x3ffffff int c1,c2,n;
int g[];
int save[];
int dp[]; int check(int s)
{
int tg[];
int cnt=;
int sum=;
for(int i=;i<n;i++)
{
if( ((<<i)&s) != )
{
tg[cnt++]=g[i];
sum+=g[i];
}
}
for(int i=;i<(<<cnt);i++)
{
int tmp,tmp1;
tmp=tmp1=;
for(int j=;j<cnt;j++)
{
if( ((<<j)&i)!=)
{
tmp+=tg[j];
}
}
tmp1=sum-tmp;
if(tmp<=c1&&tmp1<=c2)
{
return ;
}
}
// tmp tmp1 分别代表放入的不同地方
return ;
} int main()
{
int T;
scanf("%d",&T);
int tt=;
while(T--)
{
scanf("%d%d%d",&n,&c1,&c2);
for(int i=;i<n;i++)
scanf("%d",g+i);
int cnt=;
for(int i=;i<(<<n);i++)//不能从0开始吧
{
if(check(i)==)
{
save[cnt++]=i;
}
}
// 求出所有可以当成一次背包的所有情况
// 从000000 -> 111111
for(int i=;i<(<<n);i++)
dp[i]=INF;
dp[]=;
for(int i=;i<cnt;i++)
{
for(int j=(<<n);j>=save[i];j--)
{
if( (j| save[i] ) != j) continue;
dp[j]=min(dp[j],dp[j^save[i]]+);
}
} printf("Scenario #%d:\n",tt++);
printf("%d\n",dp[(<<n)-]);
printf("\n");
}
return ;
}

poj 2923(状态压缩+背包)的更多相关文章

  1. poj 2923(状态压缩dp)

    题意:就是给了你一些货物的重量,然后给了两辆车一次的载重,让你求出最少的运输次数. 分析:首先要从一辆车入手,搜出所有的一次能够运的所有状态,然后把两辆车的状态进行合并,最后就是解决了,有两种方法: ...

  2. POJ 2923 Relocation(01背包变形, 状态压缩DP)

    Q: 如何判断几件物品能否被 2 辆车一次拉走? A: DP 问题. 先 dp 求解第一辆车能够装下的最大的重量, 然后计算剩下的重量之和是否小于第二辆车的 capacity, 若小于, 这 OK. ...

  3. HDU 4739 Zhuge Liang's Mines (状态压缩+背包DP)

    题意 给定平面直角坐标系内的N(N <= 20)个点,每四个点构成一个正方形可以消去,问最多可以消去几个点. 思路 比赛的时候暴力dfs+O(n^4)枚举写过了--无意间看到有题解用状压DP(这 ...

  4. poj 3254(状态压缩+动态规划)

    http://poj.org/problem?id=3254 题意:有一个n*m的农场(01矩阵),其中1表示种了草可以放牛,0表示没种草不能放牛,并且如果某个地方放了牛,它的上下左右四个方向都不能放 ...

  5. POJ 1185 状态压缩DP(转)

    1. 为何状态压缩: 棋盘规模为n*m,且m≤10,如果用一个int表示一行上棋子的状态,足以表示m≤10所要求的范围.故想到用int s[num].至于开多大的数组,可以自己用DFS搜索试试看:也可 ...

  6. POJ 2923 【01背包+状态压缩/状压DP】

    题目链接 Emma and Eric are moving to their new house they bought after returning from their honeymoon. F ...

  7. POJ 1185 状态压缩DP 炮兵阵地

    题目直达车:   POJ 1185 炮兵阵地 分析: 列( <=10 )的数据比较小, 一般会想到状压DP. Ⅰ.如果一行10全个‘P’,满足题意的状态不超过60种(可手动枚举). Ⅱ.用DFS ...

  8. poj 1324 状态压缩+bfs

    http://poj.org/problem?id=1324 Holedox Moving Time Limit: 5000MS   Memory Limit: 65536K Total Submis ...

  9. HDU 4281 (状态压缩+背包+MTSP)

    Judges' response Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. log4j 配置(转)

    log4j是干什么的 log4j是Apache的一个开源项目,主要功能是打印日志信息,以各种形式在各种地方花式打印日志. 使用log4j的准备工作 使用log4j就必须要引入其jar包.附上官网地址h ...

  2. ios8设置application badge value

    在ios8中,直接设置application badge value会出错 [[UIApplication sharedApplication] setApplicationIconBadgeNumb ...

  3. ip范围生成 C#

    #region ip /// <summary> /// ip rang ,ip /// </summary> /// <param name="str&quo ...

  4. Linux-profile、bashrc、bash_profile之间的区别和联系

    为使Bash更好地为我们服务,我们需定制bash shell环境. ~/.bash_profile.~/.bashrc.和~/.bash_logout 上面这三个文件是bash shell的用户环境配 ...

  5. Memcached 测试

    Memcached set 命令用于将 value(数据值) 存储在指定的 key(键) 中. 如果set的key已经存在,该命令可以更新该key所对应的原来的数据,也就是实现更新的作用. 语法: s ...

  6. LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt

    LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt 解决方法: 项目--> ...

  7. python-创建一个登录判断的函数

    方法一def account_login(): password = input('Password:') if password == '12345': print('Login success!' ...

  8. 冻结 锁定 固定 行 列 表头 抬头 html table jquery 全兼容常见浏览器

    转:http://www.cnblogs.com/sorex/archive/2011/06/30/2093499.html <!DOCTYPE html PUBLIC "-//W3C ...

  9. ES6中的export,import ,export default

    ES6模块主要有两个功能:export和importexport用于对外输出本模块(一个文件可以理解为一个模块)变量的接口import用于在一个模块中加载另一个含有export接口的模块.也就是说使用 ...

  10. unity, 不要试图用rigidbody.Sleep()停止rigidbody

    如果想让rigidbody pause,用rigidbody.Sleep()是完全错误的办法.因为有很多情况都可能使一个处在sleep的rigidbody唤醒,所以调用rigidbody.Sleep( ...