Transportation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2670    Accepted Submission(s): 1157

Problem Description
There
are N cities, and M directed roads connecting them. Now you want to
transport K units of goods from city 1 to city N. There are many robbers
on the road, so you must be very careful. The more goods you carry, the
more dangerous it is. To be more specific, for each road i, there is a
coefficient ai. If you want to carry x units of goods along this road, you should pay ai * x2 dollars to hire guards to protect your goods. And what’s worse, for each road i, there is an upper bound Ci, which means that you cannot transport more than Ci units of goods along this road. Please note you can only carry integral unit of goods along each road.
You should find out the minimum cost to transport all the goods safely.
 
Input
There
are several test cases. The first line of each case contains three
integers, N, M and K. (1 <= N <= 100, 1 <= M <= 5000, 0
<= K <= 100). Then M lines followed, each contains four integers
(ui, vi, ai, Ci), indicating there is a directed road from city ui to vi, whose coefficient is ai and upper bound is Ci. (1 <= ui, vi <= N, 0 < ai <= 100, Ci <= 5)
 
Output
Output
one line for each test case, indicating the minimum cost. If it is
impossible to transport all the K units of goods, output -1.

 
Sample Input
2 1 2
1 2 1 2
2 1 2
1 2 1 1
2 2 2
1 2 1 2
1 2 2 2
 
Sample Output
4
-1
3
 
Source
 
题意:现在有一个人要从1号点运送k个单位的货物到n号点,每一条边都有一个系数a,从第i条边运送x个单位的货物所需的费用是 ai*x*x,第i条边有个容量上限Ci,问运送这k个单位的货物所需的最小费用,如果不能运送,输出-1。
题解:参考自刘汝佳的<算法竞赛-训练指南>,由于每个边的容量上限不会超过5,而我们每次运送的也是整数,所以可以利用拆边来表示一条容量为Ci的边能够运送的所有可能,假设Ci==5,那么拆成5条容量为1的边,费用分别为 1*ai,3*ai,5*ai,7*ai,9*ai,那么所有的 x*x 都可以由这几条边组合而成,然后设定超级源点和1号点的容量为 k,n号点和超级汇点的容量为k ,这样的话就限制了最大流不会超过k.然后跑一遍MCMF,判断一下maxflow是否为k,是的话,输出mincost,不是的话,输出 -1。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
const int M = ;
struct Edge{
int u,v,cap,cost,next;
}edge[M];
int head[N],tot,low[N],pre[N];
int total ;
bool vis[N];
void addEdge(int u,int v,int cap,int cost,int &k){
edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
edge[k].u=v,edge[k].v=u,edge[k].cap = ,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
}
void init(){
memset(head,-,sizeof(head));
tot = ;
}
bool spfa(int s,int t,int n){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
low[i] = INF;
pre[i] = -;
}
queue<int> q;
low[s] = ;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int k=head[u];k!=-;k=edge[k].next){
int v = edge[k].v;
if(edge[k].cap>&&low[v]>low[u]+edge[k].cost){
low[v] = low[u] + edge[k].cost;
pre[v] = k; ///v为终点对应的边
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
}
int MCMF(int s,int t,int n){
int mincost = ,minflow,flow=;
while(spfa(s,t,n))
{
minflow=INF+;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
minflow=min(minflow,edge[i].cap);
flow+=minflow;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
{
edge[i].cap-=minflow;
edge[i^].cap+=minflow;
}
mincost+=low[t]*minflow;
}
total=flow;
return mincost;
}
int n,m,k;
bool flag[N][N];
int main(){
while(scanf("%d%d%d",&n,&m,&k)!=EOF){
init();
memset(flag,-,sizeof(flag));
int src = ,des = n+;
for(int i=;i<=m;i++){
int u,v,a,c;
scanf("%d%d%d%d",&u,&v,&a,&c);
for(int j=;j<c;j++){
addEdge(u,v,,(*j+)*a,tot);
}
}
addEdge(src,,k,,tot);
addEdge(n,des,k,,tot);
int mincost = MCMF(src,des,n+);
if(total<k) printf("-1\n");
else printf("%d\n",mincost);
}
}

hdu 3667(最小费用最大流+拆边)的更多相关文章

  1. 【网络流#2】hdu 1533 - 最小费用最大流模板题

    最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...

  2. hdu 1533(最小费用最大流)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. hdu 4862KM&最小费用最大流

    /*最小K路径覆盖的模型,用费用流或者KM算法解决, 构造二部图,X部有N*M个节点,源点向X部每个节点连一条边, 流量1,费用0,Y部有N*M个节点,每个节点向汇点连一条边,流量1, 费用0,如果X ...

  4. HDU 1533 最小费用最大流(模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1533 这道题直接用了模板 题意:要构建一个二分图,家对应人,连线的权值就是最短距离,求最小费用 要注意void ...

  5. hdu 6437 /// 最小费用最大流 负花费 SPFA模板

    题目大意: 给定n,m,K,W 表示n个小时 m场电影(分为类型A.B) K个人 若某个人连续看了两场相同类型的电影则失去W 电影时间不能重叠 接下来给定m场电影的 s t w op 表示电影的 开始 ...

  6. hdu 4067(最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4067 思路:很神奇的建图,参考大牛的: 如果人为添加t->s的边,那么图中所有顶点要满足的条件都 ...

  7. hdu 2485(最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2485 思路:题目的意思是删除最少的点使1,n的最短路大于k.将点转化为边,容量为1,费用为0,然后就是 ...

  8. hdu 6201(最小费用最大流)

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  9. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

随机推荐

  1. Linux系统上的popen()库函数

    popen可以是系统命令,也可以是自己写的程序a.out. 假如a.out就是打印 “hello world“ 在代码中,想获取什么,都可以通过popen获取. 比如获取ls的信息, 比如获取自己写的 ...

  2. 使用py-faster-rcnn训练VOC2007数据集时遇到问题

    使用py-faster-rcnn训练VOC2007数据集时遇到如下问题: 1. KeyError: 'chair' File "/home/sai/py-faster-rcnn/tools/ ...

  3. BST POJ - 2309 思维题

    Consider an infinite full binary search tree (see the figure below), the numbers in the nodes are 1, ...

  4. 题解【luogu4145 上帝造题的七分钟2(花神游历各国)】

    题目大意: 一个序列,支持区间开方与求和操作. 算法:线段树实现开方修改与区间求和 分析: 显然,这道题的求和操作可以用线段树来维护 但是如何来实现区间开方呢 大家有没有这样的经历:玩计算器的时候,把 ...

  5. sql获取当前时间

    sql读取系统日期和时间的方法如下:--获取当前日期(如:yyyymmdd) select CONVERT (nvarchar(12),GETDATE(),112) --获取当前日期(如:yyyymm ...

  6. process monitor教程汇总

          这是只一个简单的例子,当然还有更复杂的规则说明,可以参考一下列表里的规则. 最后说下 process monitor 到底有什么用? 除了那些电脑高手喜欢分析程序运行情况外, 还有那些编程 ...

  7. defer与async的区别

    当浏览器碰到 script 脚本的时候: <script src="script.js"></script> 没有 defer 或 async,浏览器会立即 ...

  8. SpringMVC中 Session的使用情况

    在SpringMVC中,使用Session可以用通过两种方式 1.servlet-api 即HttpSession session.setAttritute(),session.getAttribut ...

  9. Sublime Text 3 一些简单使用

    1.注释 选中需要注释的代码,“Ctrl+/”单行注释,“Ctrl+Shift+/”多行注释.同样操作,可以取消注释. 2.查找 “Ctrl+F”,在底部会出现快速搜索框,在搜索框中输入需要搜索的变量 ...

  10. sql生成一个日期表

    SET ANSI_NULLS ONGOSET QUOTED_IDENTIFIER ONGO-- =============================================-- Auth ...