算法笔记_070:BellmanFord算法简单介绍(Java)
目录
1 问题描述
何为BellmanFord算法?
BellmanFord算法功能:给定一个加权连通图,选取一个顶点,称为起点,求取起点到其它所有顶点之间的最短距离,其显著特点是可以求取含负权图的单源最短路径。
BellmanFord算法思想:
- 第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
- 第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
- 第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:如果d(v) > d (u) + w(u,v),则返回false,表示途中存在从源点可达的权为负的回路。
2 解决方案
2.1 具体编码
Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E)。(V为给定图的顶点集合,E为给定图的边集合)
本文编码思想主要参考自文末参考资料中博客,想要进一步了解,可以参考文末参考资料。
首先看下代码中所使用的连通图(PS:改图为无向连通图,所以每两个顶点之间均有两条边):

现在求取顶点A到其它所有顶点之间的最短距离
具体代码如下:
package com.liuzhen.chapter9;
import java.util.Scanner;
public class BellmanFord {
public long[] result; //用于存放第0个顶点到其它顶点之间的最短距离
//内部类,表示图的一条加权边
class edge {
public int a; //边的起点
public int b; //边的终点
public int value; //边的权值
edge(int a, int b, int value) {
this.a = a;
this.b = b;
this.value = value;
}
}
//返回第0个顶点到其它所有顶点之间的最短距离
public boolean getShortestPaths(int n, edge[] A) {
result = new long[n];
for(int i = 1;i < n;i++)
result[i] = Integer.MAX_VALUE; //初始化第0个顶点到其它顶点之间的距离为无穷大,此处用Integer型最大值表示
for(int i = 1;i < n;i++) {
for(int j = 0;j < A.length;j++) {
if(result[A[j].b] > result[A[j].a] + A[j].value)
result[A[j].b] = result[A[j].a] + A[j].value;
}
}
boolean judge = true;
for(int i = 1;i < n;i++) { //判断给定图中是否存在负环
if(result[A[i].b] > result[A[i].a] + A[i].value) {
judge = false;
break;
}
}
return judge;
}
public static void main(String[] args) {
BellmanFord test = new BellmanFord();
Scanner in = new Scanner(System.in);
System.out.println("请输入一个图的顶点总数n和边总数p:");
int n = in.nextInt();
int p = in.nextInt();
edge[] A = new edge[p];
System.out.println("请输入具体边的数据:");
for(int i = 0;i < p;i++) {
int a = in.nextInt();
int b = in.nextInt();
int value = in.nextInt();
A[i] = test.new edge(a, b, value);
}
if(test.getShortestPaths(n, A)) {
for(int i = 0;i < test.result.length;i++)
System.out.print(test.result[i]+" ");
} else
System.out.println("给定图存在负环,没有最短距离");
}
}
运行结果:
请输入一个图的顶点总数n和边总数p:
6 18
请输入具体边的数据:
0 1 6
0 2 3
1 2 2
1 3 5
2 3 3
2 4 4
3 4 2
3 5 3
4 5 5
1 0 6
2 0 3
2 1 2
3 1 5
3 2 3
4 2 4
4 3 2
5 3 3
5 4 5
0 5 3 6 7 9
参考资料:
算法笔记_070:BellmanFord算法简单介绍(Java)的更多相关文章
- 算法笔记_221:串的简单处理(Java)
目录 1 问题描述 2 解决方案 1 问题描述 串的处理在实际的开发工作中,对字符串的处理是最常见的编程任务.本题目即是要求程序对用户输入的串进行处理.具体规则如下:1. 把每个单词的首字母变为大 ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
- 算法起步之Bellman-Ford算法
原文:算法起步之Bellman-Ford算法 从这篇开始我们开始介绍单源最短路径算法,他是图算法之一,我们前面说的贪心,图的遍历,动态规划都是他的基础,单源最短路径其实说的就是图中节点到节点的最短路径 ...
- 算法笔记之KMP算法
本文是<算法笔记>KMP算法章节的阅读笔记,文中主要内容来源于<算法笔记>.本文主要介绍了next数组.KMP算法及其应用以及对KMP算法的优化. KMP算法主要用于解决字符串 ...
- (转)简单介绍java Enumeration
简单介绍java Enumeration 分类: java技术备份 java数据结构objectstringclass存储 Enumeration接口 Enumeration接口本身不是一个数据结构 ...
- 算法笔记_054:Prim算法(Java)
目录 1 问题描述 2 解决方案 2.1 贪心法 1 问题描述 何为Prim算法? 此处引用网友博客中一段介绍(PS:个人感觉网友的这篇博客对于Prim算法讲解的很清楚,本文与之相区别的地方在于具 ...
- 算法笔记_066:Kruskal算法详解(Java)
目录 1 问题描述 2 解决方案 2.1 构造最小生成树示例 2.2 伪码及时间效率分析 2.3 具体编码(最佳时间效率) 1 问题描述 何为Kruskal算法? 该算法功能:求取加权连通图的最小 ...
- JMeter学习笔记2-图形界面简单介绍
废话少说直接干活的给: 一.打开和运行JMeter,出现UI界面.如图下所示: 工具栏:常见操作的图标集合,有New(新建), Template(模板) ,Save(保存),Start(开始) ,St ...
- 算法笔记--lca倍增算法
算法笔记 模板: vector<int>g[N]; vector<int>edge[N]; ][N]; int deep[N]; int h[N]; void dfs(int ...
随机推荐
- go chapter 8 - 初始化对象
http://blog.haohtml.com/archives/14239 struct定义的属性如果是小写开头的,那么该属性不是public的,不能跨包调用 (implicit assignmen ...
- Xamarin开发安装Visual Studio 2015 update2报错的解决办法
Xamarin开发安装Visual Studio 2015 update2报错的解决办法错误信息:update 2 requires a member of the visual studio 201 ...
- Socket读取页面
http://www.knowsky.com/363189.html http://hi.baidu.com/myyers/item/f90fa3f57d89e1d243c36a34 http://h ...
- hdu 1531 king(差分约束)
King Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- bzoj 3790: 神奇项链
3790: 神奇项链 Description 母亲节就要到了,小 H 准备送给她一个特殊的项链.这个项链可以看作一个用小写字 母组成的字符串,每个小写字母表示一种颜色.为了制作这个项链,小 H 购买了 ...
- vue的开发环境搭建命令加图解
vue的开发环境的搭建 不管什么软件我们都要去官网下载安装,这是作为专业程序员的安全意识. 1.安装node.js 官方下载的页面:点击这里 大约展示的页面是这样子的!我们演示是windows 64位 ...
- Problem X: 双层金字塔
#include<stdio.h> int main() { int i,j,n,m; while(scanf("%d",&n)!=EOF) { ;i<= ...
- NOIP2014 解题报告·水渣记
Day 1: 第一次参加noip.小激动,小紧张,这些正常的情绪就不用说了.唯一值得一提的是 我早上步行去郑大工学院的时候迷路了,直接转进了隔壁的河南农大,绕了半天找不到机房,还给几个同学打了电话可就 ...
- 94.Txx考试
2894 Txx考试 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description Txx是一个成绩很差的人,考试便成了他 ...
- Server-side Query interception with MS SQL Server
up vote15down votefavorite 5 I'm researching into intercepting queries that arrive at the SQL Serv ...