【Miller-Rabin算法】
存个板子,应该是对的吧……没太试
http://www.cnblogs.com/Norlan/p/5350243.html
Matrix67写的
根据wiki,取前9个素数当base的时候,long long内仅有一个强伪素数 382512305654641305 。
#include<cstdio>
using namespace std;
typedef long long ll;
const int BASE[]={2,3,5,7,11,13,17,19,23};
ll Quick_Mul(ll a,ll p,ll MOD)
{
if(!p){
return 0;
}
ll ans=Quick_Mul(a,p>>1,MOD);
ans=(ans+ans)%MOD;
if((p&1)==1){
ans=(ans+a%MOD)%MOD;
}
return ans;
}
ll Quick_Pow(ll a,ll p,ll MOD)
{
if(!p){
return 1;
}
ll ans=Quick_Pow(a,p>>1,MOD);
ans=Quick_Mul(ans,ans,MOD);
if((p&1)==1){
ans=(a%MOD*ans)%MOD;
}
return ans;
}
bool test(ll n,ll a,ll d){
if(n==2){
return 1;
}
if(n==a){
return 0;
}
if(!(n&1)){
return 0;
}
while(!(d&1)){
d>>=1;
}
ll t=Quick_Pow(a,d,n);
if(t==1){
return 1;//要么一开始t就等于1,咋乘都是1
}
while(d!=n-1 && t!=n-1 && t!=1){
t=Quick_Mul(t,t,n);
d<<=1;
}
return t==n-1;//要么t能变成n-1,那么下一次t肯定变成1,
//再往后也没有卵用了,一直是1,就通过了测试
}
bool Miller_Rabin(ll n){
if(n==1 || n==3825123056546413051ll){
return 0;
}
for(int i=0;i<9;++i){
if(n==BASE[i]){
return 1;
}
if(!test(n,BASE[i],n-1)){
return 0;
}
}
return 1;
}
int main(){
for(int i=1;i<=100000;++i){
if(Miller_Rabin(i)){
printf("%d ",i);
}
}
return 0;
}
【Miller-Rabin算法】的更多相关文章
- Miller Rabin算法详解
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- Miller Rabin 算法简介
0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 1 ...
- Miller Rabin算法学习笔记
定义: Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快. 定理: Miller ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
- (Miller Rabin算法)判断一个数是否为素数
1.约定 x%y为x取模y,即x除以y所得的余数,当x<y时,x%y=x,所有取模的运算对象都为整数. x^y表示x的y次方.乘方运算的优先级高于乘除和取模,加减的优先级最低. 见到x^y/z这 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- poj 1811 Pallor Rho +Miller Rabin
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
随机推荐
- canvas_简单练习
效果图 实现原理: 1.定义canvas标签. 2.获取canvas标签节点,创建canvas2D. 3.在canvas进行画图. 效果代码: <!DOCTYPE html> <ht ...
- java===java基础学习(8)---静态域与静态方法
静态域:如果将域定义为static,每个类中只有一个这样的域.而每一个对象对于所有的实例域却都有自己的一份拷贝.例如,加入需要给每一个雇员赋予唯一的标识码.这里给的Employee类添加一个实例域id ...
- C11 标准特性研究
前言 - 需要点开头 C11标准是C语言标准的第三版(2011年由ISO/IEC发布),前一个标准版本是C99标准. 相比C99,C11有哪些变化呢!!所有的测试全部基于能够和标准贴合的特性平台. 但 ...
- C++ 模板的用法
C++中的高阶手法就会用到泛型编程,主要有函数模板, 在程序中使用模板的好处就是在定义时不需要指定具体的参数类型,而在使用时确可以匹配其它任意类型, 定义格式如下 template <class ...
- JS如何获取Input的name或者ID?
<input name="music" type="image" id="music" onclick="loadmusic ...
- (转)函数后面加const--C++ const成员函数
类的成员函数后面加 const,表明这个函数不会对这个类对象的数据成员(准确地说是非静态数据成员)作任何改变. 在设计类的时候,一个原则就是对于不改变数据成员的成员函数都要在后面加 const,而对于 ...
- mysql 服务器配置
Windows: 1.在bin目录下执行mysqld.exe --install-manual安装服务(删除命令是mysqld.exe --remove) 2.执行net start mysql启动服 ...
- python_基于反射模拟Web框架路由系统
根据用户输入的内容,导入模块 #根据用户输入的内容,导入模块 inp = input("请输入模块名: ") print(inp,type(inp)) dd = __import_ ...
- mac下谷歌chrome浏览器的快捷键
1. 标签页和窗口快捷键 ⌘-N 打开新窗口. ⌘-T 打开新标签页. ⌘-Shift-N 在隐身模式下打开新窗口. 按 ⌘-O,然后选择文件. 在 Chrome 浏览器中打开计算机中的文件. 按住 ...
- hdu 2044-2050 递推专题
总结一下做递推题的经验,一般都开成long long (别看项数少,随便就超了) 一般从第 i 项开始推其与前面项的关系(动态规划也是这样),而不是从第i 项推其与后面的项的关系. hdu2044:h ...