题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同

题解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_g$

对于环,有$Polya$定理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}m^{c(g)}$($m$为颜色数,在这道题中$m=n$,$c(g)$为置换$g$中循环个数)

因为是循环相同,所以$|G|=n$,当$g=\left(
\begin{smallmatrix}
1&2&\cdots&n-k&n-k+1&\cdots&n\\
k+1&k+2&\cdots&n&1&\cdots&k
\end{smallmatrix}
\right)$时,$c(g)=\gcd(k,n)$

$$
\begin{align*}
ans&=\dfrac1{|G|}\sum\limits_{g\in G}m^{c(g)}\\
&=\dfrac1n\sum\limits_{i=1}^nn^{(i,n)}\\
&=\dfrac1n\sum\limits_{d|n}n^d\sum\limits_{i=1}^n[(i,n)=d]\\
&=\dfrac1n\sum\limits_{d|n}n^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}[(i\cdot d,n)=d]\\
&=\dfrac1n\sum\limits_{d|n}n^d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}[(i,\dfrac nd)=1]\\
&=\dfrac1n\sum\limits_{d|n}n^d\varphi(\dfrac nd)
\end{align*}
$$

虽然是多组询问,但是依然可以$O(\sqrt n)$求$\varphi$,复杂度$O(Tn^{\frac34})$,当然,正确的方法是求出质因数后递归求出每个因数的$\varphi$,复杂度$O(T\sqrt n)$

卡点:

C++ Code:

#include <cstdio>
const int mod = 1e9 + 7; namespace Math {
inline int getphi(int x) {
int res = x;
for (register int i = 2; i * i <= x; ++i) if (x % i == 0) {
res = res / i * (i - 1);
while (x % i == 0) x /= i;
}
if (x > 1) res = res / x * (x - 1);
return res;
} inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x) { return pw(x, mod - 2); }
} inline void reduce(int &x) { x += x >> 31 & mod; } int Tim, n, ans;
inline int get(int d) {
return static_cast<long long> (Math::pw(n, d)) * Math::getphi(n / d) % mod;
} int main() {
scanf("%d", &Tim);
while (Tim --> 0) {
scanf("%d", &n);
ans = 0;
for (int i = 1; i * i <= n; ++i) if (n % i == 0) {
reduce(ans += get(i) - mod);
if (i != n / i) reduce(ans += get(n / i) - mod);
}
printf("%lld\n", static_cast<long long> (ans) * Math::inv(n) % mod);
}
return 0;
}

  

[洛谷P4980]【模板】Polya定理的更多相关文章

  1. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  4. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  5. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  6. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  7. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

随机推荐

  1. mysql c 获取error_code

    #include <stdio.h> #include <mysql.h> int main(int argc, char **argv) { MYSQL *con = mys ...

  2. 韦大仙--Katalon---一款好用的selenium自动化测试插件

    selenium框架是目前使用较广泛的开源自动化框架,一款好的.基于界面的录制工具对于初学者来说可以快速入门:对于老手来说可以提高开发自动化脚本的效率.我们知道Selenium IDE是一款使用较多的 ...

  3. Unity编辑器 - DragAndDrop拖拽控件

    Unity编辑器 - DragAndDrop拖拽控件 Unity编辑器的拖拽(DragAndDrop)在网上能找到的资料少,自己稍微研究了一下,写了个相对完整的案例,效果如下 代码: object d ...

  4. CodeForces - 913C(二进制)

    链接:CodeForces - 913C 题意:给出 n 瓶饮料的花费 C 数组,每瓶的体积是 2^(i-1) 升,求至少买 L 升的最少花费. 题解:二进制数的组合可以表示任何一个数.第 i 的饮料 ...

  5. 【Set jsonObj = toJson( jsonString )】创建JSON实例

    创建JSON实例: 原型: toJson( jsonString ) 说明: 创建JSON实例 返回: [JSON] 参数: jsonString [可选] 可以用json格式字符串创建实例 示例: ...

  6. 213. String Compression【LintCode java】

    Description Implement a method to perform basic string compression using the counts of repeated char ...

  7. ionic 组件学习

    利用css列表多选框: <div class="{{Conceal}}" > <ion-checkbox color="secondary" ...

  8. 最全NB-IoT/eMTC物联网解决方案名录汇总

    NB-IoT/eMTC等蜂窝物联网技术的成熟和商用,占据低功耗广域网络(LPWAN)的主流地位,推动全球物联网新一轮发展热潮,越来越多的行业开始采用物联网方案来解决解决实际问题.实现落地应用,越来越多 ...

  9. 自测之Lesson7:设备文件操作

    题目:请编写一个输入密码(不回显)的程序,要求通过设置终端来完成. 完成代码: #include <stdio.h> #include <unistd.h> #include ...

  10. gcc 学习笔记(一) - 编译C程序 及 编译过程

    一. C程序编译过程 编译过程简介 : C语言的源文件 编译成 可执行文件需要四个步骤, 预处理 (Preprocessing) 扩展宏, 编译 (compilation) 得到汇编语言, 汇编 (a ...