• 机器学习就像酿制葡萄酒——好的葡萄(数据)+好的酿酒方法(机器学习算法)

  • 监督分类 supervised classification

  • Features ——>Labels

  • 保留10%的数据作为测试数据集

监督学习之朴素贝叶斯 Naive Bayes——寻找决策面
scikit-learn使用入门

googlesearch sklearn+Naive Bayes

关于sklearn版本
  • 视频——基于v0.17
  • 项目——基于v0.18

sklearn的现在稳定版为0.18,官方文档也升级到了0.18。但是,0.18版并不兼容0.17的代码。如果你安装了0.18版,sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve 等方法都不能直接调用。

新的API调用方法是

from sklearn.model_selection import train_test_split

计算准确度
def NB_Accuracy(features_train, labels_train, features_test, labels_test):

    ### import the sklearn module for GaussianNB
from sklearn.naive_bayes import GaussianNB ### create classifier
clf = GaussianNB() ### fit the classifier on the training features and labels clf.fit(features_train, labels_train) ### use the trained classifier to predict labels for the test features
pred = clf.predict(features_test) ### calculate and return the accuracy on the test data
### this is slightly different than the example,
### where we just print the accuracy
### you might need to import an sklearn module ### Method #1:
accuracy = clf.score(features_test, labels_test)
return accuracy
### Method #2:
from sklearn.metrics import accuracy_score
print accuracy_score(pred, labels_test)

【Udacity】朴素贝叶斯的更多相关文章

  1. 朴素贝叶斯算法下的情感分析——C#编程实现

    这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...

  2. 朴素贝叶斯(NB)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 贝叶斯分类算法是统计学的一种分类方法,其分类原理就是利用贝叶斯公式根据某 ...

  3. scikit-learn 朴素贝叶斯类库使用小结

    之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结.这里我们就从实战的角度来看朴素贝叶斯类库.重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择. 1. ...

  4. 【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积

    题记:          近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用 ...

  5. [Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)

    生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子 ...

  6. 朴素贝叶斯算法的python实现

    朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...

  7. Stanford大学机器学习公开课(六):朴素贝叶斯多项式模型、神经网络、SVM初步

    (一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多 ...

  8. Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

    (一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...

  9. Spark朴素贝叶斯(naiveBayes)

    朴素贝叶斯(Naïve Bayes) 介绍 Byesian算法是统计学的分类方法,它是一种利用概率统计知识进行分类的算法.在许多场合,朴素贝叶斯分类算法可以与决策树和神经网络分类算法想媲美,该算法能运 ...

随机推荐

  1. Struts2和SpringMVC的action是单例还是原型的?

    struts2的acion单独使用的时候应是多例的,也就是原型(prototype). 因为它是基于类开发的,它的三种获取页面传参的方式都是通过成员变量的方式来接受的. 如果用struts2框架基于方 ...

  2. Git sparse-checkout 检出指定目录或文件

    根据网上资料整理而来,git 1.7版本后支持的sparse checkout特性,可以指定需要checkout的目录或者文件. # 设置允许git克隆子目录 git config core.spar ...

  3. 匈牙利算法、KM算法

    PS:其实不用理解透增广路,交替路,网上有对代码的形象解释,看懂也能做题,下面我尽量把原理说清楚 基本概念 (部分来源.部分来源) 二分图: 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相 ...

  4. Stack — 20181121

    12. Min Stack public class MinStack { Stack<Integer> stack; Stack<Integer> minStack; pub ...

  5. STM32的固件升级(RTT

    STM32 通用 Bootloader ,让 OTA 更加 Easy 目前支持F1/F4,在线制作bootloader,准备固件升级,是RTT的云设备管理平台 https://mp.weixin.qq ...

  6. String字符串排序1.8 lamda表达式以及1.7自定义排序

    // 1.8 public class text { public static void main(String[] args) { String s1 = "哈哈哈11,呵呵呵22,嘿嘿 ...

  7. 文件IO(存取.txt文件)

    //存文件方法 public void Save_File_Info(string Save_Path) { //根据路径,创建文件和数据流 FileStream FS = new FileStrea ...

  8. Web性能优化之雅虎军规

    相信互联网已经越来越成为人们生活中不可或缺的一部分.Ajax,flex等等富客户端的应用使得人们越加“幸福”地体验着许多原先只能在C/S实 现的功能. 比如Google机会已经把最基本的office应 ...

  9. loadView 与 viewDidLoad 和 didReceiveMemoryWarning与viewDidUnload 详解

    首先试验下:viewController初始化 分两个支路:initWithNibName加载初始化 及 init 直接初始化: <1>调用initWithNibName加载一个xib界面 ...

  10. unity制作人物残影-绘制的方法

    这里是利用skinnedMeshRenderer原理做的 所以脚本需要挂在带这个组件的模型上 模型shader 必须要有个_Color参数属性,并且这个值可以调节颜色,会改变人物整体的透明度 [代码下 ...