深入理解NIO(三)—— NIO原理及部分源码的解析
深入理解NIO(三)—— NIO原理及部分源码的解析
欢迎回到淦™的源码看爆系列
在看完前面两个系列之后,相信大家对NIO也有了一定的理解,接下来我们就来深入源码去解读它,我这里的是OpenJDK-8u60版本,建议大家也下一份放ide里和我一起看会比较好理解。(这里主要介绍Selector,Buffer第一篇有提到一点,Channel也不过是些Buffer的操作方法而已,这里就不提及了,大家感兴趣可以自己去看)
老哥行行好,转载和我说一声好吗,我不介意转载的,但是请把原文链接贴大点好吗
open()
// 1. 创建Selector
Selector selector = Selector.open();
首先我们来分析open方法:
// Selector
public static Selector open() throws IOException {
// 这里的静态方法provider会使用DefaultSelectorProvider.create();方法根据系统选择一个SelectorProvider
// windows平台的话是WindowsSelectorProvider,
// Linux平台是一个EPollSelectorProvider,这里主要分析Linux平台下的
// 之后openSelector方法(一会看下面)会返回一个EPollSelectorImpl作为Selector的实现,我们一般提及的Selector就是它了
return SelectorProvider.provider().openSelector();
} // EPollSelectorProvider
public AbstractSelector openSelector() throws IOException {
return new EPollSelectorImpl(this);
}
之后是EPollSelectorImpl的构造方法:
EPollSelectorImpl(SelectorProvider sp) throws IOException {
super(sp);
long pipeFds = IOUtil.makePipe(false);
fd0 = (int) (pipeFds >>> 32);
fd1 = (int) pipeFds;
// 其他的我也看不太懂,我们直接进去这个EPollArrayWrapper的构造方法
pollWrapper = new EPollArrayWrapper();
pollWrapper.initInterrupt(fd0, fd1);
fdToKey = new HashMap<>();
}
// EPollArrayWrapper
EPollArrayWrapper() throws IOException {
// 直接看这里,这里调用了一个封装出来的Linux的api:epoll_create,这个东西大概可以理解成一个selector,详细的我们下一章再讲解
epfd = epollCreate();
}
所以其实Selector方法大抵上就是封装了一个epoll_create() 方法,当然还调用了一下epoll_ctl(),把serverchannel给注册进去。
register()
// 5. 将channel注册到selector上,监听连接事件
serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
接下来我们分析把channel注册到Selector上的register方法
// SelectableChannel
public final SelectionKey register(Selector sel, int ops)
throws ClosedChannelException
{
return register(sel, ops, null);
} // AbstractSelectableChannel
public final SelectionKey register(Selector sel, int ops,
Object att)
throws ClosedChannelException
{
// 212行,剩下的删掉了
k = ((AbstractSelector)sel).register(this, ops, att); } // SelectorImpl
protected final SelectionKey register(AbstractSelectableChannel ch,
int ops,
Object attachment)
{
if (!(ch instanceof SelChImpl))
throw new IllegalSelectorException();
//生成SelectorKey来存储到hashmap中,一共之后获取
SelectionKeyImpl k = new SelectionKeyImpl((SelChImpl)ch, this);
//attach用户想要存储的对象
k.attach(attachment);
//调用子类的implRegister方法,接下来进去这里
synchronized (publicKeys) {
implRegister(k);
}
//设置关注的option
k.interestOps(ops);
return k;
}
protected void implRegister(SelectionKeyImpl ski) {
if (closed)
throw new ClosedSelectorException();
SelChImpl ch = ski.channel;
//获取Channel所对应的fd,因为在linux下socket会被当作一个文件,也会有fd
int fd = Integer.valueOf(ch.getFDVal());
fdToKey.put(fd, ski);
//调用pollWrapper的add方法,将channel的fd添加到监控列表中
pollWrapper.add(fd);
//保存到HashSet中,keys是SelectorImpl的成员变量
keys.add(ski);
}
调用register方法并没有涉及到EpollArrayWrapper中的native方法epollCtl的调用,这是因为他们将这个方法的调用推迟到Select方法中去了.
select()
// 获取可用channel数量
int readyChannels = selector.select();
接下来我们来分析select()方法
// SelectorImpl
public int select(long timeout)
throws IOException
{
. . . .
return lockAndDoSelect((timeout == 0) ? -1 : timeout);
} // SelectorImpl
private int lockAndDoSelect(long timeout) throws IOException {
. . . .
return doSelect(timeout);
}
// EPollSelectorImpl
protected int doSelect(long timeout) throws IOException {
.....
try {
....
//调用了poll方法,底层调用了native的epollCtl和epollWait方法
pollWrapper.poll(timeout);
} finally {
....
}
....
//更新selectedKeys,为之后的selectedKeys函数做准备
int numKeysUpdated = updateSelectedKeys();
....
return numKeysUpdated;
}
// EPollArrayWrapper
int poll(long timeout) throws IOException {
// 这里面的实现就是调用epoll_ctl()方法注册先前在register方法中保存的Channel的fd和感兴趣的事件类型
updateRegistrations();
// 这里是调用epollWait方法等待感兴趣事件的生成,导致线程阻塞
updated = epollWait(pollArrayAddress, NUM_EPOLLEVENTS, timeout, epfd);
. . . .
}
上面提到的epollCtl和epollWait方法在下一章我们会详细讲,这里先不讲。
总之我们可以知道Selector其实就是封装了Linux提供的api而已,也就是epollCreate、epollCtl和epollWait方法。
selectedKeys()
// 获取可用channel的集合
Set<SelectionKey> selectionKeys = selector.selectedKeys();
接下来我们来看看selectedKeys()方法:
// SelectorImpl
//是通过Util.ungrowableSet生成的,不能添加,只能减少
private Set<SelectionKey> publicSelectedKeys;
public Set<SelectionKey> selectedKeys() {
....
return publicSelectedKeys;
}
很奇怪啊,怎麽直接就返回publicSelectedKeys了,难道在select函数的执行过程中有修改过这个变量吗?publicSelectedKeys这个对象其实是selectedKeys变量的一份副本,你可以在SelectorImpl的构造函数中找到它们俩的关系,我们再回头看一下select中updateSelectedKeys方法:
private int updateSelectedKeys() {
//更新了的keys的个数,或在说是产生的事件的个数
int entries = pollWrapper.updated;
int numKeysUpdated = 0;
for (int i=0; i<entries; i++) {
//对应的channel的fd
int nextFD = pollWrapper.getDescriptor(i);
//通过fd找到对应的SelectionKey
SelectionKeyImpl ski = fdToKey.get(Integer.valueOf(nextFD));
if (ski != null) {
int rOps = pollWrapper.getEventOps(i);
//更新selectedKey变量,并通知响应的channel来做响应的处理
if (selectedKeys.contains(ski)) {
if (ski.channel.translateAndSetReadyOps(rOps, ski)) {
numKeysUpdated++;
}
} else {
ski.channel.translateAndSetReadyOps(rOps, ski);
if ((ski.nioReadyOps() & ski.nioInterestOps()) != 0) {
// 这里加进去
selectedKeys.add(ski);
numKeysUpdated++;
}
}
}
}
return numKeysUpdated;
}
不知道大家有没有留意到,如果我们不先调用select(),直接selectedKeys()是不会获得任何Channel的,因为里面没有更新publicSelectedKeys的方法
还有一点是,publicSelectedKeys是selectedKeys的引用,所以我们获得的是它的引用,而不是每次返回一个新对象,这个引用里面的Channel我们处理完后要记得remove掉,不然下次还是会返回给你的。
顺便一提这里publicSelectedKeys是采用 publicSelectedKeys = Util.ungrowableSet(selectedKeys); 的方式创建出来的,这个方法创建出来的set如方法名ungrowableSet,是不能调用add方法的,只能remove
为什么Netty自己又从新实现了一边native相关的NIO底层方法? 听听Netty的创始人是怎麽说的吧链接。
因为Java的版本使用的epoll的LT模式,而Netty则希望使用ET模式(详情看第四篇的两种触发模式),而且Java版本没有将epoll的部分配置项暴露出来,比如说TCP_CORK和SO_REUSEPORT。
下一篇:epoll的实现原理

参考资料:
https://segmentfault.com/a/1190000017798684?utm_source=tag-newest
深入理解NIO(三)—— NIO原理及部分源码的解析的更多相关文章
- netty源码解解析(4.0)-11 Channel NIO实现-概览
结构设计 Channel的NIO实现位于io.netty.channel.nio包和io.netty.channel.socket.nio包中,其中io.netty.channel.nio是抽象实 ...
- spring5 源码深度解析----- 被面试官给虐懵了,竟然是因为我不懂@Configuration配置类及@Bean的原理
@Configuration注解提供了全新的bean创建方式.最初spring通过xml配置文件初始化bean并完成依赖注入工作.从spring3.0开始,在spring framework模块中提供 ...
- 并发编程(十五)——定时器 ScheduledThreadPoolExecutor 实现原理与源码深度解析
在上一篇线程池的文章<并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)>中从ThreadPoolExecutor源码分析了其运行机制.限于篇幅,留下了Scheduled ...
- Thrift之代码生成器Compiler原理及源码详细解析1
我的新浪微博:http://weibo.com/freshairbrucewoo. 欢迎大家相互交流,共同提高技术. 又很久没有写博客了,最近忙着研究GlusterFS,本来周末打算写几篇博客的,但是 ...
- Java的三种代理模式&完整源码分析
Java的三种代理模式&完整源码分析 参考资料: 博客园-Java的三种代理模式 简书-JDK动态代理-超详细源码分析 [博客园-WeakCache缓存的实现机制](https://www.c ...
- 深入理解Java AIO(二)—— AIO源码解析
深入理解Java AIO(二)—— AIO源码解析 这篇只是个占位符,占个位置,之后再详细写(这个之后可能是永远) 所以这里只简单说一下我看了个大概的实现原理,具体的等我之后更新(可能不会更新了) 当 ...
- sobel算子原理及opencv源码实现
sobel算子原理及opencv源码实现 简要描述 sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 原理 算子使用两个33的矩阵(图1)算子使用两个33的矩阵(图1)去 ...
- SpringMVC关于json、xml自动转换的原理研究[附带源码分析 --转
SpringMVC关于json.xml自动转换的原理研究[附带源码分析] 原文地址:http://www.cnblogs.com/fangjian0423/p/springMVC-xml-json-c ...
- android Service Activity三种交互方式(付源码)(转)
android Service Activity三种交互方式(付源码) Android应用服务器OSBeanthread android Service Binder交互通信实例 最下边有源代码: ...
随机推荐
- Python列表倒序输出及其效率
Python列表倒序输出及其效率 方法一 使用Python内置函数reversed() for i in reversed(arr): pass reversed返回的是迭代器,所以不用担心内存问题. ...
- Nuxt 项目性能优化调研
性能优化,这是面试中经常会聊到的话题.我觉得性能优化应该因具体场景而异,因不同项目而异,不同的手段不同的方案并不一定适合所有项目,当然这其中不乏一些普适的方案,比如耳熟能详的文件压缩,文件缓存,CDN ...
- 正式学习MVC 03
1.View -> Controller的数据通信 1) 通过url查询字符串 public ActionResult Index(string user) { return Content(u ...
- 沪江iKcamp出品微信小程序教学共5章16小节汇总(含视频)
- 前端每日实战:39# 视频演示如何用纯 CSS 创作一个表达怀念童年心情的条纹彩虹心特效
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QxbmxJ 可交互视频教程 此视频 ...
- ABP开发框架前后端开发系列---(16)ABP框架升级最新版本的经验总结
有一小段时间没有持续升级ABP框架了,最近就因应客户的需要,把ABP框架进行全面的更新,由于我们应用的ABP框架,基础部分还是会使用官方的内容,因此升级的时候需要把官方基础ABP的DLL进行全面的更新 ...
- idea最下方视图中没有spring框解决方法
之前遇到过idea打开一个项目后,如图所示的spring视图框消失不见了. 并且view-Tool windows里面也找不到的问题;因为没有这个的话还挺烦的,网上搜了好久都没有资料,所以记录一下; ...
- 基于osg的python三维程序开发(二)------向量
上一篇文章展示了如何简单创建一个osg python 程序, 本篇展示了了一些基础数据结构的使用: from pyosg import * vec = osg.Vec3Array() #push ba ...
- 基于osg的python三维程序开发(一)
背景: osg是一款开源的三维引擎,在过去多年的发展中积累了大量的用户,该引擎基于场景树的管理,使用方法简单.但是对长期使用python作为开发工具的朋友来说, 有一定门槛. 下面的小程序,演示了如何 ...
- flask连接数据库的URI书写格式
1. MySQL mysql://username:password@hostname/database 2. PostgreSQL postgresql://username:password@ho ...