3分钟理解NMS非极大值抑制
1. NMS被广泛用到目标检测技术中,正如字面意思,抑制那些分数低的目标,使最终框的位置更准;
2. 假如图片上实际有10张人脸,但目标检测过程中,检测到有30个框的位置,并且模型都认为它们是人脸,造成这种情况的原因通常是因为一部分人脸被重复框了多次,虽然多个框框的是同一张人脸,但这些重复的框的位置是不同(有的框多了,有的框少了,有的框偏了...),那么NMS的目的就是从这些重复的框中选出一个局部最优的框作为局部的最终输出,理想状态下,30个框经过NMS最终只剩下10个作为整体的最终输出(因为存在有些人脸没有检测到的情况,本文只讨论理想状态)。
3. 大致步骤:
!!!首先创建空集合M用于存放多个局部最优框
a. 选出30个框中得分最高的那个框记作A;
b. 遍历剩下的29个框计并算与A的重叠率,重叠率大于阈值时,删除该框(假设第一轮删除了4个框);
c. 这时A已经确定是最终整体输出的一部分了,将A添加到集合M中;
d. 将剩下25个框重复上述a/b/c步骤,直至没有任意两个框的重叠率大于阈值,最后输出M;
以上是个人见解,如有不同看法欢迎讨论!
3分钟理解NMS非极大值抑制的更多相关文章
- Non-Maximum Suppression,NMS非极大值抑制
Non-Maximum Suppression,NMS非极大值抑制概述非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索. ...
- 输出预测边界框,NMS非极大值抑制
我们预测阶段时: 生成多个锚框 每个锚框预测类别和偏移量 但是,当同一个目标上可能输出较多的相似的预测边界框.我们可以移除相似的预测边界框.——NMS(非极大值抑制). 对于一个预测边界框B,模型会计 ...
- 【56】目标检测之NMS非极大值抑制
非极大值抑制(Non-max suppression) 到目前为止你们学到的对象检测中的一个问题是,你的算法可能对同一个对象做出多次检测,所以算法不是对某个对象检测出一次,而是检测出多次.非极大值抑制 ...
- NMS(非极大值抑制)实现
1.IOU计算 设两个边界框分别为A,B.A的坐标为Ax1,Ax2,Ay1,Ay2,且Ax1 < Ax2,Ay1 < Ay2.B和A类似. 则IOU为A∩B除以A∪B. 当两个边界框有重叠 ...
- NMS(非极大值抑制算法)
目的:为了消除多余的框,找到最佳的物体检测的位置 思想: 选取那些领域里分数最高的窗口,同时抑制那些分数低的窗口 Soft-NMS
- NMS(Non-Maximum Suppression) 非极大值抑制
NMS 非极大值抑制:找到局部最大值,并删除邻域内其他的值. 简单说一下流程: 首先剔除背景(背景无需NMS),假设有6个边界框,根据分类置信度对这6个边界框做降序排列,假设顺序为A.B.C.D.E ...
- IoU与非极大值抑制(NMS)的理解与实现
1. IoU(区域交并比) 计算IoU的公式如下图,可以看到IoU是一个比值,即交并比. 在分子中,我们计算预测框和ground-truth之间的重叠区域: 分母是并集区域,或者更简单地说,是预测框和 ...
- 非极大值抑制(Non-Maximum Suppression,NMS)
概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二 ...
- 目标检测 非极大值抑制(Non-Maximum Suppression,NMS)
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.也可以理解为只取置信度最高的一个识别结果. 举例:  如图所示,现在 ...
随机推荐
- Alpha冲刺 —— 5.9
这个作业属于哪个课程 软件工程 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 Alpha冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.总 ...
- Javascript中target事件属性,事件的目标节点的获取。
window.event.srcElement与window.event.target 都是指向触发事件的元素,它是什么就有什么样的属性 srcElement是事件初始化目标html元素对象引用,因为 ...
- 【Flutter组件终结篇】332个组件 658页PDF
老孟导读:历时1年的时间,整理完成了330+组件的详细用法,不仅包含UI组件,还包含了功能性的组件. 虽然整理了 330+的组件基本用法,但并不是让你每一个都学习一遍,任何技术基本都是掌握 20%就可 ...
- 基础数论——EXGCD
1.前言 \(皆さん.こんにちは.\)今天我们来讲 \(EXGCD\) .(扩展欧几里得) 既然是扩展嘛,那肯定有不扩展的,也就是 \(GCD\) . 我们都知道 \(GCD\) 怎么写: ll GC ...
- Java 第十一届 蓝桥杯 省模拟赛 递增序列
问题描述 在数列 a[1], a[2], -, a[n] 中,如果 a[i] < a[i+1] < a[i+2] < - < a[j],则称 a[i] 至 a[j] 为一段递增 ...
- (Java实现) 过河卒
过河卒 题目描述 棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为&q ...
- Java实现蓝桥杯方格计数
标题:方格计数 如图p1.png所示,在二维平面上有无数个1x1的小方格. 我们以某个小方格的一个顶点为圆心画一个半径为 50000 的圆. 你能计算出这个圆里有多少个完整的小方格吗? 注意:需要提交 ...
- Java实现 LeetCode 57 插入区间
57. 插入区间 给出一个无重叠的 ,按照区间起始端点排序的区间列表. 在列表中插入一个新的区间,你需要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间). 示例 1: 输入: inte ...
- [原创][开源] SunnyUI.Net 字体图标
SunnyUI.Net, 基于 C# .Net WinForm 开源控件库.工具类库.扩展类库.多页面开发框架 Blog: https://www.cnblogs.com/yhuse Gitee: h ...
- Linux系统管理——Linux安装
实验软件包下载地址 VirtualBox下载地址 VirtualBox:下载地址 CentOS7镜像下载地址 CentOS7:下载地址 远程登录管理工具下载地址 MobaXterm:下载地址 Virt ...