1. Semantic Segmentation

  把每个像素分类到某个语义。

  为了减少运算量,会先降采样再升采样。降采样一般用池化层,升采样有各种“Unpooling”、“Transpose Convolution”(文献中也叫“Upconvolution”之类的其他名字)。

  这个问题的训练数据的获得非常昂贵,因为需要一个像素一个像素的贴标签。

2. Classification + Localizatoin

  一般用同一个网络,一方面得出分类,一方面得出Bounding box的位置和大小。

3. Object Detection

  预先设定好要找哪些objects,一旦图片里发现,就框出来。Classification + Localizatoin一般是针对单个物体,而这里是针对多个物体。

  Sliding window:计算量太大,舍弃。

  Region Proposals:先找可能有物体的图片区域,然后一个个处理,在CPU上大概几秒的时间。这种方法在深度学习之前就出来了。

  R-CNN:先找出region proposal,然后把region proposal调整成神经网络需要的大小,然后给神经网络计算,最后通过SVM分类。

      训练很慢(84h),也非常耗内存。预测也很慢(47秒 VGG16)

  Fast R-CNN:相比R-CNN快很多,训练(8.75h),预测(计算region proposal花2秒,神经网络预测花0.32秒)。

        训练的时候把下图中的Linear + softmax和Linear加起来得到multi-task loss。

  Faster R-CNN:用卷积层去预测region proposal。比Fast R-CNN更快,预测耗时0.2秒。

  YOLO(Redmon et al., CVPR 2016)/SSD(Liu et al, "Single-Shot MultiBox Detecotr", ECCV 2016):这两种方法没有用region proposal,更快,但是相对不那么准。Faster R-CNN更慢,但是更准。

  Object Detection + Captioning (DenseCap, CVPR 2016)

4. Instance Segmentation

  Semantic Segmentation和Object Detection的结合,找出多个物体,并且判断每个像素属于哪个分类。

  Mask R-CNN (He et al., 2017),网络有两个分支,第一个执行Object Detection,第二个执行Semantic Segmentation。这个网络把之前的都融合起来,是集大成者,表现非常非常好。在Object Detection分支加入对人体关节的识别,还能识别人的pose。基于Faster R-CNN,接近real-time。

cs231n spring 2017 lecture11 Detection and Segmentation的更多相关文章

  1. cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记

    1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...

  2. cs231n spring 2017 lecture13 Generative Models 听课笔记

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  3. cs231n spring 2017 lecture9 CNN Architectures 听课笔记

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  4. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  5. cs231n spring 2017 Python/Numpy基础 (1)

    本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...

  6. cs231n spring 2017 lecture13 Generative Models

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  7. cs231n spring 2017 lecture9 CNN Architectures

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  8. cs231n spring 2017 lecture7 Training Neural Networks II

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  9. cs231n spring 2017 Python/Numpy基础

    本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...

随机推荐

  1. PAT-树-DFS-BFS相关问题解决方案整理

    如何建树? 二叉树-建树-方式一 dfs使用root左右指针建立树节点关系,返回根节点root 二叉树-建树-方式二 dfs使用二维数组,int nds[n][2],如:nds[i][0]表示i节点的 ...

  2. 主席树--动态区间第k小

    主席树--动态区间第\(k\)小 模板题在这里洛谷2617. 先对几个问题做一个总结: 阅读本文需要有主席树的基础,也就是通过区间kth的模板题. 静态整体kth: sort一下找第k小,时间复杂度\ ...

  3. Python—程序设计:抽象工厂模式

    抽象工厂模式 内容:定义一个工厂类接口,让工厂子类来创建一系列相关或相互依赖的对象. 例:生产一部手机,需要手机壳.CPU.操作系统三类对象进行组装,其中每类对象都有不同的种类.对每个具体工厂,分别生 ...

  4. XCOM串口助手打印不出数据

    本次实验是在基于原子的战舰开发板上的做定时器捕获实验,程序源码下载到板子上运行正常.指示灯正常显示,打开XCOM识别不来串口,原因:硬件上没有插USB转串口线: 连接上USB转串口线,软件上以显示CH ...

  5. Spring Data JPA简单查询接口方法速查

    下表针对于简单查询,即JpaRepository接口(继承了CrudRepository接口.PagingAndSortingRepository接口)中的可访问方法进行整理.(1)先按照功能进行分类 ...

  6. SEO初步学习之新站优化

    新站优化技巧:新站有两个月扶持期,在扶持期间仅做一件事,提交大量优质受众的原创,且内容为不间断,即每天定点定量发布文章,使得蜘蛛对网站形成爬行习惯,新站初期内容为王,优化为辅. 虽说优化为辅,却不可或 ...

  7. nginx常用编译参数

    ./configurate --prefix=/app/tengine --user=www --group=www --with-http_v2_module --with-http_ssl_mod ...

  8. 操作uwsgi命令

    uwsgi -i 你的目录/uwsgi.ini & 后台开启uwsgi pkill -f uwsgi 重启uwsgi

  9. VCRedist_x86.exe Vcredist_x64.exe

    Update for Visual C++ 2013 and Visual C++ Redistributable Package https://support.microsoft.com/en-u ...

  10. Android Studio 停靠模式(Docked Mode)

    如果之前选了任务一种模式,先全都取消了 然后点击Window -->Active Tool Window-->这个时候就可以选择Docked Mode了