cs231n spring 2017 lecture11 Detection and Segmentation
1. Semantic Segmentation
把每个像素分类到某个语义。
为了减少运算量,会先降采样再升采样。降采样一般用池化层,升采样有各种“Unpooling”、“Transpose Convolution”(文献中也叫“Upconvolution”之类的其他名字)。
这个问题的训练数据的获得非常昂贵,因为需要一个像素一个像素的贴标签。

2. Classification + Localizatoin
一般用同一个网络,一方面得出分类,一方面得出Bounding box的位置和大小。

3. Object Detection
预先设定好要找哪些objects,一旦图片里发现,就框出来。Classification + Localizatoin一般是针对单个物体,而这里是针对多个物体。
Sliding window:计算量太大,舍弃。
Region Proposals:先找可能有物体的图片区域,然后一个个处理,在CPU上大概几秒的时间。这种方法在深度学习之前就出来了。
R-CNN:先找出region proposal,然后把region proposal调整成神经网络需要的大小,然后给神经网络计算,最后通过SVM分类。
训练很慢(84h),也非常耗内存。预测也很慢(47秒 VGG16)

Fast R-CNN:相比R-CNN快很多,训练(8.75h),预测(计算region proposal花2秒,神经网络预测花0.32秒)。
训练的时候把下图中的Linear + softmax和Linear加起来得到multi-task loss。

Faster R-CNN:用卷积层去预测region proposal。比Fast R-CNN更快,预测耗时0.2秒。

YOLO(Redmon et al., CVPR 2016)/SSD(Liu et al, "Single-Shot MultiBox Detecotr", ECCV 2016):这两种方法没有用region proposal,更快,但是相对不那么准。Faster R-CNN更慢,但是更准。
Object Detection + Captioning (DenseCap, CVPR 2016)
4. Instance Segmentation
Semantic Segmentation和Object Detection的结合,找出多个物体,并且判断每个像素属于哪个分类。
Mask R-CNN (He et al., 2017),网络有两个分支,第一个执行Object Detection,第二个执行Semantic Segmentation。这个网络把之前的都融合起来,是集大成者,表现非常非常好。在Object Detection分支加入对人体关节的识别,还能识别人的pose。基于Faster R-CNN,接近real-time。

cs231n spring 2017 lecture11 Detection and Segmentation的更多相关文章
- cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记
1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...
- cs231n spring 2017 lecture13 Generative Models 听课笔记
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 Python/Numpy基础 (1)
本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...
- cs231n spring 2017 lecture13 Generative Models
1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...
- cs231n spring 2017 lecture9 CNN Architectures
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
- cs231n spring 2017 lecture7 Training Neural Networks II
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 Python/Numpy基础
本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...
随机推荐
- bootstrap 基础表单
表单中常见的元素主要包括:文本输入框.下拉选择框.单选按钮.复选按钮.文本域和按钮等.其中每个控件所起的作用都各不相同,而且不同的浏览器对表单控件渲染的风格都各有不同. ☑ LESS版本:对应源文 ...
- 201771010123汪慧和《面向对象程序设计JAVA》第六周实验总结
一.理论部分: 1.继承 用已有类来构建新类的一种机制.当定义了一个新类继承了一个类时,这个新类就继承了这个类的方法和域,同时在新类中添加新的方法和域以适应新的情况. 2.类.超类.子类 (1)类继承 ...
- reference-based measure|Distribution-based measure|密码子使用偏向性
生命组学 密码子使用偏向性是指同义密码子使用频率不同. 影响因素:1.GC2.横向基因转移3.selection 转录偏好于多的tRNA. 同种氨基酸但有密码子使用偏向. ============== ...
- vi_终端中的编辑器操作
vi -- 终端中的编辑器 目标 vi 简介 打开和新建文件 三种工作模式 常用命令 分屏命令 常用命令速查图 01. vi 简介 1.1 学习 vi 的目的 在工作中,要对 服务器 上的文件进行 简 ...
- P2P平台疯狂爆雷后,你的生活受到影响了吗?
最近这段时间P2P爆雷的新闻和报道一直占据着各大财经和科技媒体的重要位置.而据网贷之家数据显示,截至2018年7月底,P2P网贷行业累计平台数量达到6385家(含停业及问题平台),其中问题平台累计为2 ...
- FullPage.js中文帮助文档API
fullPage.js的方法: 1. moveSectionUp() 功能:向上滚动一页. 2. moveSectionDown() 功能:向下滚动一页. 3. moveTo(section, sli ...
- 正则表达式匹配字符串中的数字 Python
1.使用“\d+”匹配全数字 代码: import re zen = "Arizona 479, 501, 870. Carlifornia 209, 213, 650." m = ...
- 【iOS学习笔记】UITextField中的输入检测——限制只能输入数字和小数点
最近趁着放假时间,在看The Big Nerd Ranch的iOS编程,想着重新复习一遍iOS开发的基础知识 于是从这一篇开始记录一些学习过程中遇到的小问题 书中第四章有一个温度转换的app实现,整体 ...
- Educational Codeforces Round 64(Unrated for Div.1+Div. 2)
什么垃圾比赛,A题说的什么鬼楞是没看懂.就我只会BD(其实C是个大水题二分),垃圾游戏,技不如人,肝败吓疯,告辞,口胡了E就睡觉了. B 很容易发现,存在一种方案,使得相同字母连在一起,然后发现,当字 ...
- iOS 自定义只有年月的DatePikerView
头文件: @interface YearMonthPikerView : UIView @property (nonatomic,copy) void(^cancelBlock)(); @proper ...