Spark文档阅读之二:Programming Guides - Quick Start
Quick Start: https://spark.apache.org/docs/latest/quick-start.html
一、最简单的Spark Shell交互分析
scala> val textFile = spark.read.textFile("README.md") # 构建一个Dataset
textFile: org.apache.spark.sql.Dataset[String] = [value: string]
scala> textFile.count() # Dataset的简单计算
res0: Long =
scala> val linesWithSpark = textFile.filter(line => line.contain("Spark")) # 由现有Dataset生成新Dataset
res1: org.apache.spark.sql.Dataset[String] = [value: string]
# 等价于:
# res1 = new Dataset()
# for line in textFile:
# if line.contain("Spark"):
# res1.append(line)
# linesWithSpark = res1
scala> linesWithSpark.count()
res2: Long =
# 可以将多个操作串行起来
scala> textFile.filter(line => line.contain("Spark")).count()
res3: Long =
进一步的Dataset分析:
scala> textFile.map(line => line.split(" ").size).reduce((a,b) => if (a > b) a else b)
res12: Int =
# 其实map和reduce就是两个普通的算子,不要被MapReduce中一个map配一个reduce、先map后reduce的思想所束缚
# map算子就是对Dataset的元素X计算fun(X),并且将所有f(X)作为新的Dataset返回
# reduce算子其实就是通过两两计算fun(X,Y)=Z,将Dataset中的所有元素归约为1个值
# 也可以引入库进行计算
scala> import java.lang.Math
import java.lang.Math
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))
res14: Int =
# 还可以使用其他算子
scala> val wordCounts = textFile.flatMap(line => line.split(" ")).groupByKey(identity).count()
# flatMap算子也是对Dataset的每个元素X执行fun(X)=Y,只不过map的res是
# res.append(Y),如[[Y11, Y12], [Y21, Y22]],结果按元素区分
# 而flatMap是
# res += Y,如[Y11, Y12, Y21, Y22],各元素结果合在一起
# groupByKey算子将Dataset的元素X作为参数传入进行计算f(X),并以f(X)作为key进行分组,返回值为KeyValueGroupedDataset类型
# 形式类似于(key: k; value: X1, X2, ...),不过KeyValueGroupedDataset不是一个Dataset,value列表也不是一个array
# 注意:这里的textFile和textFile.flatMap都是Dataset,不是RDD,groupByKey()中可以传func;如果以sc.textFile()方法读文件,得到的是RDD,groupByKey()中间不能传func
# identity就是函数 x => x,即返回自身的函数
# KeyValueGroupedDataset的count()方法返回(key, len(value))列表,结果是Dataset类型
scala> wordCounts.collect()
res37: Array[(String, Long)] = Array((online,), (graphs,), ...
# collect操作:将分布式存储在集群上的RDD/Dataset中的所有数据都获取到driver端
数据的cache:
scala> linesWithSpark.cache() # in-memory cache,让数据在分布式内存中缓存
res38: linesWithSpark.type = [value: string] scala> linesWithSpark.count()
res41: Long =
二、最简单的独立Spark任务(spark-submit提交)
import org.apache.spark.sql.SparkSession
object SimpleApp {
def main(args: Array[String]) {
val logFile = "/Users/dxm/work-space/spark-2.4.5-bin-hadoop2.7/README.md"
val spark = SparkSession.builder.appName("Simple Application").getOrCreate()
val logData = spark.read.textFile(logFile).cache()
val numAs = logData.filter(line => line.contains("a")).count() # 包含字母a的行数
val numBs = logData.filter(line => line.contains("b")).count() # 包含字母b的行数
println(s"Lines with a: $numAs, Lines with b: $numBs")
spark.stop()
}
}
2)编写sbt依赖文件build.sbt
name := "Simple Application" version := "1.0" scalaVersion := "2.12.10" libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.4.5"
其中,"org.apache.spark" %% "spark-sql" % "2.4.5"这类库名可以在网上查到,例如https://mvnrepository.com/artifact/org.apache.spark/spark-sql_2.10/1.0.0

$ find .
.
./build.sbt
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala
sbt目录格式要求见官方文档 https://www.scala-sbt.org/1.x/docs/Directories.html
src/
main/
resources/
<files to include in main jar here>
scala/
<main Scala sources>
scala-2.12/
<main Scala 2.12 specific sources>
java/
<main Java sources>
test/
resources
<files to include in test jar here>
scala/
<test Scala sources>
scala-2.12/
<test Scala 2.12 specific sources>
java/
<test Java sources>
使用sbt打包
# 打包
$ sbt package
...
[success] Total time: s (:), completed -- ::
# jar包位于 target/scala-2.12/simple-application_2.-1.0.jar
4)提交并执行Spark任务
$ bin/spark-submit --class "SimpleApp" --master spark://xxx:7077 ../scala-tests/SimpleApp/target/scala-2.12/simple-application_2.12-1.0.jar
# 报错:Caused by: java.lang.ClassNotFoundException: scala.runtime.LambdaDeserialize
# 参考:https://stackoverflow.com/questions/47172122/classnotfoundexception-scala-runtime-lambdadeserialize-when-spark-submit
# 这是spark版本和scala版本不匹配导致的
查询spark所使用的scala的版本
$ bin/spark-shell --master spark://xxx:7077 scala> util.Properties.versionString
res0: String = version 2.11.

$ bin/spark-submit --class "SimpleApp" --master spark://xxx:7077 ../scala-tests/SimpleApp/target/scala-2.11/simple-application_2.11-1.0.jar
Lines with a: , Lines with b:
Spark文档阅读之二:Programming Guides - Quick Start的更多相关文章
- Spring 4.3.11.RELEASE文档阅读(二):Core Technologies_IOC
在看这部分内容的时候,想了一些问题: 容器: 1,什么是容器 用来包装或装载物品的贮存器 2,容器能做什么 包装或装载物品 3,为什么需要容器 为什么要使用集装箱?如果没有容器会是什么样? 4,常见的 ...
- Spark文档阅读之一:Spark Overview
Document: https://spark.apache.org/docs/latest/index.html 版本:2.4.5 1. spark的几种执行方式 1)交互式shell:bin/ ...
- Spring 4.3.11.RELEASE文档阅读(二):Core Technologies_AOP
虽然并不是每个问题都有答案,但我想了很多问题.so, just write it down , maybe one day...... AOP: 1,AOP是啥 2,AOP思想是怎么产生的 3,AOP ...
- 转:苹果Xcode帮助文档阅读指南
一直想写这么一个东西,长期以来我发现很多初学者的问题在于不掌握学习的方法,所以,Xcode那么好的SDK文档摆在那里,对他们也起不到什么太大的作用.从论坛.微博等等地方看到的初学者提出的问题,也暴露出 ...
- Node.js的下载、安装、配置、Hello World、文档阅读
Node.js的下载.安装.配置.Hello World.文档阅读
- 我的Cocos Creator成长之路1环境搭建以及基本的文档阅读
本人原来一直是做cocos-js和cocos-lua的,应公司发展需要,现转型为creator.会在自己的博客上记录自己的成长之路. 1.文档阅读:(cocos的官方文档) http://docs.c ...
- Keras 文档阅读笔记(不定期更新)
目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...
- Django文档阅读-Day1
Django文档阅读-Day1 Django at a glance Design your model from djano.db import models #数据库操作API位置 class R ...
- Django文档阅读-Day2
Django文档阅读 - Day2 Writing your first Django app, part 1 You can tell Django is installed and which v ...
随机推荐
- 4.4MSSQLServer常用版本介绍
以SQL Server 2008版本为例: -SQL Server 2008 Datacenter(x86 x64 ia64)数据中心版,最强大的版本,要付费的 -SQL Server 2008 En ...
- 虚拟机配置JAVA_HOME
1.cp home/fan-vm2/es/tools/jdk-8u111-linux-x64.tar.gz usr/java2.tar -zxvf jdk-8u111-linux-x64.tar.gz ...
- day24 面向对象与实例属性
编程进化论: 1.编程最开始就是无组织无结构,从简单控制流中按步写指令 2.从上述的指令中提取重复的代码块或逻辑,组织到一起(比方说,你定义了一个函数),便实现来代码重用,且代码从无结构走向了机构化, ...
- 深入理解JS:执行上下文中的this(二)
目录 序言 Function.prototype.bind() 方法 箭头函数 参考 1.序言 在 深入理解JS:执行上下文中的this(一) 中,我们主要深入分析全局环境和函数环境中函数调用的 th ...
- akka-typed(2) - typed-actor交流方式和交流协议
akka系统是一个分布式的消息驱动系统.akka应用由一群负责不同运算工作的actor组成,每个actor都是被动等待外界的某种消息来驱动自己的作业.所以,通俗点描述:akka应用就是一群actor相 ...
- 乌云jsonp案例
新浪微博之点击我的链接就登录你的微博(JSONP劫持) 生活处处有惊喜啊!逛逛wooyun都能捡到bug. 测试的时候没关burp,逛乌云的时候抓到一条url: http://login.sina.c ...
- 细说Java多线程之内存可见性笔记
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 说明:多线程的内存可见性涉及到多线程间的数据争用,也涉及到了多线程间的数据可见性 一.共享变量在线程间的 ...
- Java实现蓝桥杯VIP算法训练 纪念品分组
试题 算法训练 纪念品分组 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作.为使得参加晚会的同学所获得的纪念品价值 相对均衡, ...
- Java实现 计蒜客 拯救行动
拯救行动 公主被恶人抓走,被关押在牢房的某个地方.牢房用 N \times M (N, M \le 200)N×M(N,M≤200) 的矩阵来表示.矩阵中的每项可以代表道路(@).墙壁(#).和守卫( ...
- Java实现 LeetCode 169 多数元素
169. 多数元素 给定一个大小为 n 的数组,找到其中的多数元素.多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在多数元素. 示例 1: 输 ...