题目Description

给出一个矩阵, 求子矩阵(可以是其本身)数之和的最大值

Input

第一行 为行数n和列数m       (n≤500, m≤500)

接下来为一个n行m列的矩阵 (每个值ai,−1000 ≤ ai ≤ 1000)

Output

子矩阵(可以是其本身)数之和的最大值

Sample Input:

4  4

0 -2 -7  0

9  2 -6  2

-4 1 -4  1

-1 8  0  -2

Sample Output

15

解题思路:

解法1:单纯用二维前缀和  时间复杂度O(n*n*m*m);(TLE)

解法2:dp+前缀和  时间复杂度O(n*n*m) 或O(n*m*m)

  如果是求一维的最长子序列 我们会用O(n)的时间复杂度求出

  而这里为二维的, 能否用一维的解法思想去转化一下?

刚开始从行数遍历(不裁剪列数情况下)所有的子矩阵, 需要O(n²)时间, 之后对于这样遍历的子矩阵进行求解最大和,能否利用O(m)时间完成求解

  遍历后的二维子矩阵可以一维数组化(即 将 单列上的数相加为一个数, 构造出plus数组), 再利用求一维最长子序列的思想(O(m)时间复杂度)即可

构造plus数组:利用每一列上的前缀和, 比如求第 k 列上第 i 行到第 j 行的数之和 plus[k] = col_sum[j][k] - col_sum[i-1][k];   O(1) 时间复杂度

     单独构造col_sum数组: O(n*m)时间复杂度

以下为c语言代码(解法2)

 #include <stdio.h>
int a[][], col_sum[][];
int max_subsequence(int * a, int n) {
int sum = -1e7, max = -1e7;
for (int i = ; i < n; i++) {
sum = (sum + a[i] > a[i])? sum + a[i] : a[i];
max = (sum > max)? sum : max;
}
return max;
}
int main() {
int row, col, plus[];
scanf("%d%d", &row, &col);
for (int i = ; i < row; i++) {
for (int j = ; j < col; j++) {
scanf("%d", &a[i][j]);
}
}
for (int j = ; j < col; j++) {
for (int i = ; i < row; i++) {
if (i == ) {
col_sum[i][j] = a[i][j];
}
else {
col_sum[i][j] = col_sum[i-][j] + a[i][j];
}
}
}
int ans = -1e7;
for (int i = ; i < row; i++) {
for (int k = i; k < row; k++) {
if (i == ) {
for (int j = ; j < col; j++) {
plus[j] = col_sum[k][j];
}
int temp = max_subsequence(plus, col);
ans = (temp > ans) ? temp : ans;
}
else {
for (int j = ; j < col; j++) {
plus[j] = col_sum[k][j] - col_sum[i-][j];
}
int temp = max_subsequence(plus, col);
ans = (temp > ans) ? temp : ans;
}
}
}
printf("%d\n", ans);
return ;
}

 

dp例题03. 最大子矩阵和的更多相关文章

  1. hdu 1081 dp问题:最大子矩阵和

    题目链接 题意:给你一个n*n矩阵,求这个矩阵的最大子矩阵和 #include<iostream> #include<cstdio> #include<string.h& ...

  2. 基础dp例题整理

    背包: 消失之物 先直接做一遍,必然对于i,有 for(j=m;j>=w[i];--j) f[i]+=f[i-w[i]] 所以,如果排除用i做背包的结果,减去这个转移就好了. memcpy(g, ...

  3. [hdu 4734]数位dp例题

    通过这个题目更加深入了解到了数位dp在记忆化搜索的过程中就是实现了没有限制条件的n位数的状态复用. #include<bits/stdc++.h> using namespace std; ...

  4. 大白第一章第四节dp例题

    入口 UVALive - 3882 #include<cstdio> using namespace std; ; int n,m,k,f[N]; int main(){ //f[i]表示 ...

  5. dp例题02. 滑雪问题 (poj1088)

    poj1088滑雪问题 题目链接:http://poj.org/status Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得 ...

  6. dp例题01. 任务价值最大化

    题目Description: 大凯有n项任务可选择去做, 分别对应有开始时间, 结束时间以及任务报酬, 同一时间内最多做一件任务, 现在大凯想知道最多能得到多少报酬, 于是把求解任务交给了你. 输入: ...

  7. 区间dp 例题

    D - 石子合并问题--直线版 HRBUST - 1818 这个题目是一个区间dp的入门,写完这个题目对于区间dp有那么一点点的感觉,不过还是不太会. 注意这个区间dp的定义 dp[i][j] 表示的 ...

  8. NOI题库 1768最大子矩阵 题解

    NOI题库 1768最大子矩阵  题解     总时间限制: 1000ms 内存限制: 65536kB   描述   已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大 ...

  9. LightOJ1033 Generating Palindromes(区间DP/LCS)

    题目要计算一个字符串最少添加几个字符使其成为回文串. 一年多前,我LCS这道经典DP例题看得还一知半解时遇到一样的问题,http://acm.fafu.edu.cn/problem.php?id=10 ...

随机推荐

  1. 痞子衡嵌入式:恩智浦i.MX RTxxx系列MCU启动那些事(6.1)- FlexSPI NOR连接方式大全(RT600)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT600的FlexSPI NOR启动的连接方式. 痞子衡前段时间一鼓作气写完了三篇关于i.MXRT1xxx系列Flex ...

  2. https信任库采坑记

    最近在客户现场遇到一个棘手的http问题,现象很直接,访问某https的时候报错: javax.net.ssl.SSLPeerUnverifiedException: peer not authent ...

  3. 基于springcloud搭建项目-Feign篇(四)

    上一篇已经写过ribbon客户端负载均衡的用法了,这篇主要是介绍feign的用法,首先我们必须了解feign是什么?能干嘛?怎么用? 这里简单介绍一下,然后进行代码测试 1.概述 Feign是一个声明 ...

  4. JavaMail(二):利用JavaMail发送复杂邮件

    上一篇文章我们学习了利用JavaMail发送简单邮件,这篇文章我们利用JavaMail发送稍微复杂一点的邮件(包含文本.图片.附件).这里只贴出核心代码,其余代码可参考JavaMail(一):利用Ja ...

  5. go学习第五天、运算符

    算术运算符 下表列出了所有Go语言的算术运算符.假定 A 值为 10,B 值为 20 运算符 描述 实例 + 相加 A + B 输出结果 30 - 相减 A - B 输出结果 -10 * 相乘 A * ...

  6. scrapy-redis使用以及剖析(转)

    scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能: scheduler - 调度器 dupefilter - URL去重 ...

  7. 《JavaScript 模式》读书笔记(2)— 基本技巧3

    这是基本技巧的最后一篇内容,这篇内容示例代码并不多.主要是概念比较多一点. 编码约定 确定并一致遵循约定比这个具体约定是什么更为重要. 一.缩进 无论是使用tab还是空格,只要是一致遵循的,是什么并不 ...

  8. 【Weiss】【第03章】增补附注

    基本上每章到增补附注这里就算是结束了. 根据设想,每章的这一篇基本上会注明这一章哪些题没有做,原因是什么,如果以后打算做了也会在这里补充. 还有就是最后会把有此前诸多习题的代码和原数据结构放整理后,以 ...

  9. F版本SpringCloud 3—大白话Eureka服务注册与发现

    引用:服务注册与发现,就像是租房子一样 前言 今天洛阳下雨了,唉,没有想到有裹上了羽绒服,不穿冷穿了热的尴尬温度.上学工作这么多年都在外面,家里竟然没有一件春天的外套. 日常闲聊之后,开始今天的芝士环 ...

  10. c# winform 访问WebServices 服务(通过WEB引用的方式进行访问)

    第一步.Winform项目引用WEB服务 第二步.代码声明实例化 Web引用 YzServ.TestServ yzserv = new WebYzServ.TestServ(); yzserv.AAA ...