机器翻译和数据集

机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。

主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。

import os
os.listdir('/home/kesci/input/')
['fraeng6506', 'd2l9528', 'd2l6239']
import sys
sys.path.append('/home/kesci/input/d2l9528/')
import collections
import d2l
import zipfile
from d2l.data.base import Vocab
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
from torch import optim

数据预处理

将数据集清洗、转化为神经网络的输入minbatch

with open('/home/kesci/input/fraeng6506/fra.txt', 'r') as f:
raw_text = f.read()
print(raw_text[0:1000])
Go.	Va !	CC-BY 2.0 (France) Attribution: tatoeba.org #2877272 (CM) & #1158250 (Wittydev)
Hi. Salut ! CC-BY 2.0 (France) Attribution: tatoeba.org #538123 (CM) & #509819 (Aiji)
Hi. Salut. CC-BY 2.0 (France) Attribution: tatoeba.org #538123 (CM) & #4320462 (gillux)
Run! Cours ! CC-BY 2.0 (France) Attribution: tatoeba.org #906328 (papabear) & #906331 (sacredceltic)
Run! Courez ! CC-BY 2.0 (France) Attribution: tatoeba.org #906328 (papabear) & #906332 (sacredceltic)
Who? Qui ? CC-BY 2.0 (France) Attribution: tatoeba.org #2083030 (CK) & #4366796 (gillux)
Wow! Ça alors ! CC-BY 2.0 (France) Attribution: tatoeba.org #52027 (Zifre) & #374631 (zmoo)
Fire! Au feu ! CC-BY 2.0 (France) Attribution: tatoeba.org #1829639 (Spamster) & #4627939 (sacredceltic)
Help! À l'aide ! CC-BY 2.0 (France) Attribution: tatoeba.org #435084 (lukaszpp) & #128430 (sysko)
Jump. Saute. CC-BY 2.0 (France) Attribution: tatoeba.org #631038 (Shishir) & #2416938 (Phoenix)
Stop! Ça suffit ! CC-BY 2.0 (France) Attribution: tato
def preprocess_raw(text):
text = text.replace('\u202f', ' ').replace('\xa0', ' ')
out = ''
for i, char in enumerate(text.lower()):
if char in (',', '!', '.') and i > 0 and text[i-1] != ' ':
out += ' '
out += char
return out text = preprocess_raw(raw_text)
print(text[0:1000])
go .	va !	cc-by 2 .0 (france) attribution: tatoeba .org #2877272 (cm) & #1158250 (wittydev)
hi . salut ! cc-by 2 .0 (france) attribution: tatoeba .org #538123 (cm) & #509819 (aiji)
hi . salut . cc-by 2 .0 (france) attribution: tatoeba .org #538123 (cm) & #4320462 (gillux)
run ! cours ! cc-by 2 .0 (france) attribution: tatoeba .org #906328 (papabear) & #906331 (sacredceltic)
run ! courez ! cc-by 2 .0 (france) attribution: tatoeba .org #906328 (papabear) & #906332 (sacredceltic)
who? qui ? cc-by 2 .0 (france) attribution: tatoeba .org #2083030 (ck) & #4366796 (gillux)
wow ! ça alors ! cc-by 2 .0 (france) attribution: tatoeba .org #52027 (zifre) & #374631 (zmoo)
fire ! au feu ! cc-by 2 .0 (france) attribution: tatoeba .org #1829639 (spamster) & #4627939 (sacredceltic)
help ! à l'aide ! cc-by 2 .0 (france) attribution: tatoeba .org #435084 (lukaszpp) & #128430 (sysko)
jump . saute . cc-by 2 .0 (france) attribution: tatoeba .org #631038 (shishir) & #2416938 (phoenix)
stop ! ça suffit ! cc-b

字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。

而 \xa0 属于 latin1 (ISO/IEC_8859-1)中的扩展字符集字符,代表不间断空白符nbsp(non-breaking space),超出gbk编码范围,是需要去除的特殊字符。再数据预处理的过程中,我们首先需要对数据进行清洗。

分词

字符串—单词组成的列表

num_examples = 50000
source, target = [], []
for i, line in enumerate(text.split('\n')):
if i > num_examples:
break
parts = line.split('\t')
if len(parts) >= 2:
source.append(parts[0].split(' '))
target.append(parts[1].split(' ')) source[0:3], target[0:3]
([['go', '.'], ['hi', '.'], ['hi', '.']],
[['va', '!'], ['salut', '!'], ['salut', '.']])
d2l.set_figsize()
d2l.plt.hist([[len(l) for l in source], [len(l) for l in target]],label=['source', 'target'])
d2l.plt.legend(loc='upper right');

建立词典

单词组成的列表—单词id组成的列表

def build_vocab(tokens):
tokens = [token for line in tokens for token in line]
return d2l.data.base.Vocab(tokens, min_freq=3, use_special_tokens=True) src_vocab = build_vocab(source)
len(src_vocab)
3789

载入数据集

def pad(line, max_len, padding_token):
if len(line) > max_len:
return line[:max_len]
return line + [padding_token] * (max_len - len(line))
pad(src_vocab[source[0]], 10, src_vocab.pad)
[38, 4, 0, 0, 0, 0, 0, 0, 0, 0]
def build_array(lines, vocab, max_len, is_source):
lines = [vocab[line] for line in lines]
if not is_source:
lines = [[vocab.bos] + line + [vocab.eos] for line in lines]
array = torch.tensor([pad(line, max_len, vocab.pad) for line in lines])
valid_len = (array != vocab.pad).sum(1) #第一个维度
return array, valid_len

def load_data_nmt(batch_size, max_len): # This function is saved in d2l.
src_vocab, tgt_vocab = build_vocab(source), build_vocab(target)
src_array, src_valid_len = build_array(source, src_vocab, max_len, True)
tgt_array, tgt_valid_len = build_array(target, tgt_vocab, max_len, False)
train_data = data.TensorDataset(src_array, src_valid_len, tgt_array, tgt_valid_len)
train_iter = data.DataLoader(train_data, batch_size, shuffle=True)
return src_vocab, tgt_vocab, train_iter
src_vocab, tgt_vocab, train_iter = load_data_nmt(batch_size=2, max_len=8)
for X, X_valid_len, Y, Y_valid_len, in train_iter:
print('X =', X.type(torch.int32), '\nValid lengths for X =', X_valid_len,
'\nY =', Y.type(torch.int32), '\nValid lengths for Y =', Y_valid_len)
break
X = tensor([[   5,   24,    3,    4,    0,    0,    0,    0],
[ 12, 1388, 7, 3, 4, 0, 0, 0]], dtype=torch.int32)
Valid lengths for X = tensor([4, 5])
Y = tensor([[ 1, 23, 46, 3, 3, 4, 2, 0],
[ 1, 15, 137, 27, 4736, 4, 2, 0]], dtype=torch.int32)
Valid lengths for Y = tensor([7, 7])

Encoder-Decoder

encoder:输入到隐藏状态

decoder:隐藏状态到输出

class Encoder(nn.Module):
def __init__(self, **kwargs):
super(Encoder, self).__init__(**kwargs) def forward(self, X, *args):
raise NotImplementedError
class Decoder(nn.Module):
def __init__(self, **kwargs):
super(Decoder, self).__init__(**kwargs) def init_state(self, enc_outputs, *args):
raise NotImplementedError def forward(self, X, state):
raise NotImplementedError
class EncoderDecoder(nn.Module):
def __init__(self, encoder, decoder, **kwargs):
super(EncoderDecoder, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder def forward(self, enc_X, dec_X, *args):
enc_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_outputs, *args)
return self.decoder(dec_X, dec_state)

可以应用在对话系统、生成式任务中。

Sequence to Sequence模型

模型:

训练



预测

具体结构:

Encoder

class Seq2SeqEncoder(d2l.Encoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqEncoder, self).__init__(**kwargs)
self.num_hiddens=num_hiddens
self.num_layers=num_layers
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout) def begin_state(self, batch_size, device):
return [torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens), device=device),
torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens), device=device)]
def forward(self, X, *args):
X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size)
X = X.transpose(0, 1) # RNN needs first axes to be time
# state = self.begin_state(X.shape[1], device=X.device)
out, state = self.rnn(X)
# The shape of out is (seq_len, batch_size, num_hiddens).
# state contains the hidden state and the memory cell
# of the last time step, the shape is (num_layers, batch_size, num_hiddens)
return out, state
encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2)
X = torch.zeros((4, 7),dtype=torch.long)
output, state = encoder(X)
output.shape, len(state), state[0].shape, state[1].shape
(torch.Size([7, 4, 16]), 2, torch.Size([2, 4, 16]), torch.Size([2, 4, 16]))

Decoder

class Seq2SeqDecoder(d2l.Decoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqDecoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout)
self.dense = nn.Linear(num_hiddens,vocab_size) def init_state(self, enc_outputs, *args):
return enc_outputs[1] def forward(self, X, state):
X = self.embedding(X).transpose(0, 1)
out, state = self.rnn(X, state)
# Make the batch to be the first dimension to simplify loss computation.
out = self.dense(out).transpose(0, 1)
return out, state
decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2)
state = decoder.init_state(encoder(X))
out, state = decoder(X, state)
out.shape, len(state), state[0].shape, state[1].shape
(torch.Size([4, 7, 10]), 2, torch.Size([2, 4, 16]), torch.Size([2, 4, 16]))

损失函数

def SequenceMask(X, X_len,value=0):
maxlen = X.size(1)
mask = torch.arange(maxlen)[None, :].to(X_len.device) < X_len[:, None]
X[~mask]=value
return X
X = torch.tensor([[1,2,3], [4,5,6]])
SequenceMask(X,torch.tensor([1,2]))
tensor([[1, 0, 0],
[4, 5, 0]])
X = torch.ones((2,3, 4))
SequenceMask(X, torch.tensor([1,2]),value=-1)
tensor([[[ 1.,  1.,  1.,  1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.]], [[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[-1., -1., -1., -1.]]])
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
# pred shape: (batch_size, seq_len, vocab_size)
# label shape: (batch_size, seq_len)
# valid_length shape: (batch_size, )
def forward(self, pred, label, valid_length):
# the sample weights shape should be (batch_size, seq_len)
weights = torch.ones_like(label)
weights = SequenceMask(weights, valid_length).float()
self.reduction='none'
output=super(MaskedSoftmaxCELoss, self).forward(pred.transpose(1,2), label)
return (output*weights).mean(dim=1)
loss = MaskedSoftmaxCELoss()
loss(torch.ones((3, 4, 10)), torch.ones((3,4),dtype=torch.long), torch.tensor([4,3,0]))
tensor([2.3026, 1.7269, 0.0000])

训练

def train_ch7(model, data_iter, lr, num_epochs, device):  # Saved in d2l
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
loss = MaskedSoftmaxCELoss()
tic = time.time()
for epoch in range(1, num_epochs+1):
l_sum, num_tokens_sum = 0.0, 0.0
for batch in data_iter:
optimizer.zero_grad()
X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch]
Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1 Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
l = loss(Y_hat, Y_label, Y_vlen).sum()
l.backward() with torch.no_grad():
d2l.grad_clipping_nn(model, 5, device)
num_tokens = Y_vlen.sum().item()
optimizer.step()
l_sum += l.sum().item()
num_tokens_sum += num_tokens
if epoch % 50 == 0:
print("epoch {0:4d},loss {1:.3f}, time {2:.1f} sec".format(
epoch, (l_sum/num_tokens_sum), time.time()-tic))
tic = time.time()
embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0
batch_size, num_examples, max_len = 64, 1e3, 10
lr, num_epochs, ctx = 0.005, 300, d2l.try_gpu()
src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt(
batch_size, max_len,num_examples)
encoder = Seq2SeqEncoder(
len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqDecoder(
len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
model = d2l.EncoderDecoder(encoder, decoder)
train_ch7(model, train_iter, lr, num_epochs, ctx)
epoch   50,loss 0.093, time 38.2 sec
epoch 100,loss 0.046, time 37.9 sec
epoch 150,loss 0.032, time 36.8 sec
epoch 200,loss 0.027, time 37.5 sec
epoch 250,loss 0.026, time 37.8 sec
epoch 300,loss 0.025, time 37.3 sec

测试

def translate_ch7(model, src_sentence, src_vocab, tgt_vocab, max_len, device):
src_tokens = src_vocab[src_sentence.lower().split(' ')]
src_len = len(src_tokens)
if src_len < max_len:
src_tokens += [src_vocab.pad] * (max_len - src_len)
enc_X = torch.tensor(src_tokens, device=device)
enc_valid_length = torch.tensor([src_len], device=device)
# use expand_dim to add the batch_size dimension.
enc_outputs = model.encoder(enc_X.unsqueeze(dim=0), enc_valid_length)
dec_state = model.decoder.init_state(enc_outputs, enc_valid_length)
dec_X = torch.tensor([tgt_vocab.bos], device=device).unsqueeze(dim=0)
predict_tokens = []
for _ in range(max_len):
Y, dec_state = model.decoder(dec_X, dec_state)
# The token with highest score is used as the next time step input.
dec_X = Y.argmax(dim=2)
py = dec_X.squeeze(dim=0).int().item()
if py == tgt_vocab.eos:
break
predict_tokens.append(py)
return ' '.join(tgt_vocab.to_tokens(predict_tokens))
for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
print(sentence + ' => ' + translate_ch7(
model, sentence, src_vocab, tgt_vocab, max_len, ctx))
Go . => va !
Wow ! => <unk> !
I'm OK . => ça va .
I won ! => j'ai gagné !

Beam Search

简单greedy search:

维特比算法:选择整体分数最高的句子(搜索空间太大)

集束搜索:


L10机器的更多相关文章

  1. Linux A机器免密码SSH登录B机器

    一.问题 如上,A机器经常需远程操作B机器,传输文件到B机器,每次输入帐号密码过于繁琐,下文通过ssh公钥能解免密码操作问题. 二.解决 1.方案 SSH认证采用公钥与私钥认证方式. 2.步骤 1) ...

  2. Java_jvisualvm使用JMX连接远程机器(实践)

    https://my.oschina.net/heroShane/blog/196227 一.启动普通的jar程序 1.执行foo.jar启动命令 java -Dcom.sun.management. ...

  3. 使用ARP欺骗, 截取局域网中任意一台机器的网页请求,破解用户名密码等信息

    ARP欺骗的作用 当你在网吧玩,发现有人玩LOL大吵大闹, 用ARP欺骗把他踢下线吧 当你在咖啡厅看上某一个看书的妹纸,又不好意思开口要微信号, 用arp欺骗,不知不觉获取到她的微信号和聊天记录,吓一 ...

  4. [bigdata] 使用Redis队列来实现与机器无关的Job提交与执行 (python实现)

    用例场景: 定时从远程多台机器上下载文件存入HDFS中.一开始采用shell 一对一的方式实现,但对于由于网络或者其他原因造成下载失败的任务无法进行重试,且如果某台agent机器down机,将导致它对 ...

  5. XP机器上WCF采用X509证书加密时IIS读取证书的授权

    XP机器上WCF采用X509证书加密时IIS读取证书的授权 XP下的授权命令为:winhttpcertcfg -g -c LOCAL_MACHINE\My -s 证书名称 -a "ASPNE ...

  6. Linux下不同机器之间拷贝文件

    在Linux系统下,不同机器上实现文件拷贝 一.将本地文件拷贝到远程机器: scp /home/administrator/news.txt root@192.168.6.129:/etc/squid ...

  7. 更改机器名后,打开TFS提示工作区错误的处理

    1,打开vs下的"开发人员命令提示"2,按下面格式输入命令:tf workspaces 查看, 假设显示如下: C:\Program Files (x86)\Microsoft V ...

  8. CruiseControl.Net <buildpublisher>部署到远程机器报错的解决办法

    CruiseControl.Net ,使用<buildpublisher>将编译后的程序部署到远程机器时,使用以下配置 <buildpublisher> <sourceD ...

  9. 如何知道SQL Server机器上有多少个NUMA节点

    如何知道SQL Server机器上有多少个NUMA节点 文章出处: How can you tell how many NUMA nodes your SQL Server has? http://i ...

随机推荐

  1. 洛谷1258 Tire字典树

    直接上代码: #include<bits/stdc++.h> using namespace std; typedef unsigned int ui; typedef long long ...

  2. 金融和IT的区别

    在进入金融圈之前, 我写了十五年的代码, 在San Francisco Bay Area(也就是中国人所说的硅谷)工作过两三年. 去年因为Fintech和香港.NET俱乐部的缘故, 我接触了私人银行和 ...

  3. Range Module

    2019-09-21 18:54:16 715. Range Module 问题描述: 问题求解: 用线段树解决了. class RangeModule { Node root; class Node ...

  4. 一些js 概念 整理

    1.原型链 prototype       这个属性 是一个指针,指向一个对象 这个对象 包含 所有实例共享的属性和方法,即这个原型对象是用来给实例共享属性和方法的.          而每个实例内部 ...

  5. Python python 数据类型--集

    # set 集 '''Python还包括集合的数据类型.集合是无序集合,没有重复元素. 基本用途包括成员资格测试和消除重复条目. 集合对象还支持数学运算,如并集,交集,差异和对称差异. ''' nam ...

  6. VS2015 远程调试:Remote Debugger

    一.关于Remote Debugger 使用VS远程调试器Remote Debugger,我们可以调试部署在不同机器上的应用程序,如桌面应用程序和Asp.Net应用程序. 二.Remote Debug ...

  7. Python用户终端输入

    #用户输入,操作 print("python 用户输入操作") # input(提示字符串),函数阻塞程序,并提醒用户输入字符串 instr = input("pleas ...

  8. python之xlrd和xlwt模块读写excel使用详解

    一.xlrd模块和xlwt模块是什么      xlrd模块是python第三方工具包,用于读取excel中的数据:      xlwt模块是python第三方工具包,用于往excel中写入数据: 二 ...

  9. A - 你能数的清吗 51Nod - 1770(找规律)

    A - 你能数的清吗 51Nod - 1770(找规律) 演演是个厉害的数学家,他最近又迷上了数字谜.... 他很好奇 xxx...xxx(n个x)*y 的答案中 有多少个z,x,y,z均为位数只有一 ...

  10. Codeforces Round #627 (Div. 3)

    1324A - Yet Another Tetris Problem(思维) 题意 给一个数组,每一个数组中的元素大小表示在竖直方向的方块数量,元素相邻怎竖直方向的方块也相邻,类似于俄罗斯方块当底层被 ...