The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3
第一次接触不给权值的最小生成树问题,处理方法和原来一样。。
题目大意:首先输入有N个城市,然后按照城市顺序输入城市的坐标。最后输出的是需要在哪两个城市之间添加一下路径,这个题目还有个坑就是,输出的结果,对顺序没有要求。
就是即便把1 3 输出成了3 1 也无所谓的
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
const int N= 1E6+;
int pre[N];
struct stu{
int a,b;
int x;
}p[N],pp[N]; bool cmp(stu x1,stu y1){
if(x1.x!=y1.x)
return x1.x<y1.x;
else if(x1.a!=y1.a){
return x1.a<y1.a;
}
return x1.b<y1.b;
} int find(int x){
if(x==pre[x]) return x;
return pre[x]=find(pre[x]);
}
void join(int x,int y){
int fx=find(x),fy=find(y);
if(fx!=fy){
pre[fx]=fy;
}
} int main(){
int n;
cin>>n; for(int i=;i<=n;i++){
pre[i]=i;
} for(int i=;i<=n;i++){
scanf("%d%d",&p[i].a,&p[i].b);
} int pos=;
for(int i=;i<n;i++){
for(int j=i+;j<=n;j++){
pp[pos].a=i;//i号城市
pp[pos].b=j;//j号城市
pp[pos].x=(p[i].a-p[j].a)*(p[i].a-p[j].a)+(p[i].b-p[j].b)*(p[i].b-p[j].b);//i号城市到j号城市的距离
pos++;
}
}
sort(pp,pp+pos,cmp);
int m;
cin>>m;
int xx,yy;
for(int j=;j<=m;j++) {
scanf("%d%d",&xx,&yy);
join(xx,yy);
}
for(int i=;i<pos;i++){
int fx=find(pp[i].a);
int fy=find(pp[i].b);
if(fx!=fy){
pre[fx]=fy;
cout<<pp[i].a<<" "<<pp[i].b<<endl;
}
}
return ;
}

C - Highways poj1751最小生成树的更多相关文章

  1. Highways POJ-1751 最小生成树 Prim算法

    Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...

  2. POJ-1751 Highways(最小生成树消边+输出边)

    http://poj.org/problem?id=1751 Description The island nation of Flatopia is perfectly flat. Unfortun ...

  3. POJ1751 Highways【最小生成树】

    题意: 给你N个城市的坐标,城市之间存在公路,但是由于其中一些道路损坏了,需要维修,维修的费用与公路长成正比(公路是直的). 但现有M条公路是完整的,不需要维修,下面有M行,表示不需要维修的道路两端的 ...

  4. POJ 1751 Highways (最小生成树)

    Highways 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/G Description The island nation ...

  5. POJ 2485:Highways(最小生成树&amp;&amp;prim)

    Highways Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21628   Accepted: 9970 Descrip ...

  6. POJ 1751 Highways 【最小生成树 Kruskal】

    Highways Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23070   Accepted: 6760   Speci ...

  7. POJ 2485 Highways( 最小生成树)

    题目链接 Description The islandnation of Flatopia is perfectly flat. Unfortunately, Flatopia has no publ ...

  8. POJ 2485 Highways【最小生成树最大权——简单模板】

    链接: http://poj.org/problem?id=2485 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  9. POJ 2485 Highways (求最小生成树中最大的边)

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...

随机推荐

  1. BFC是什么?BFC有什么用?看完全明白

    一.BFC是什么? 官方定义 BFC(Block Formatting Context,块格式化上下文) 是Web页面的可视化CSS渲染的一部分,是块盒子的布局过程发生的区域,也是浮动元素与其他元素交 ...

  2. 【笔记3-31】Python语言基础-序列sequence

    序列sequence 可变序列 列表 list 字典 不可变序列 字符串 str 元祖 tuple 通过索引修改列表 del 删除元素 del my_list[2] 切片赋值只能是序列 .insert ...

  3. 一篇文章让你了解动态数组的数据结构的实现过程(Java 实现)

    目录 数组基础简单回顾 二次封装数组类设计 基本设计 向数组中添加元素 在数组中查询元素和修改元素 数组中的包含.搜索和删除元素 使用泛型使该类更加通用(能够存放 "任意" 数据类 ...

  4. html-css:浮动_清除浮动

    1.浮动 清除浮动之前我们首先需要了解为什么要清除浮动 1. 假设我们有一个父盒子,不设置高度,其高度有内部子盒子的大小自动撑开,这样是完全可行的,因为有时候我们并不想直接固定死父盒子的大小,而是根据 ...

  5. JavaScript JSON 与 AJAX

    JavaScript JSON 与 AJAX JSON 是一种轻量的数据交互格式,与 AJAX 配合完成前端页面与服务端的信息传递,本文介绍 JSON 的使用.原生 AJAX 写法.JSONP 跨域解 ...

  6. gold 波浪

  7. vue 跳转 同一路由不刷新问题解决

    vue跳转同一路径时,路由参数改变,但页面无法更新 问题原因 vue路由切换实际是组件间的切换,引用相同组件的时候,页面就无法更新 解决方案 方案1.watch监听路由参数变化,并重新渲染(谨慎选择) ...

  8. 万字长文带你入门Zookeeper!!!

    导读 文章首发于微信公众号[码猿技术专栏],原创不易,谢谢支持. Zookeeper 相信大家都听说过,最典型的使用就是作为服务注册中心.今天陈某带大家从零基础入门 Zookeeper,看了本文,你将 ...

  9. ORM框架对分表分库的实现

    *:first-child { margin-top: 0 !important; } .markdown-body>*:last-child { margin-bottom: 0 !impor ...

  10. 分享layui的table的一些小技巧,前端分页

    最近一直在折腾报表,期间使用了layui的table做展示(版本号:2.5.5) 起初:以为是查询结果出来后,前端和服务端分页一弄就完事了,参考例子,但是sql写得太长太长了,翻页困难,数据库是老旧的 ...