「NOI2016」循环之美

对于小数\(\frac{a}{b}\),如果它在\(k\)进制下被统计,需要满足要求并且不重复。

不重复我们确保这个分数是最简分数即\((a,b)=1\)

满足要求需要满足第一位的余数在后面仍然出现,第一位余数是\(a\bmod b\),后面第\(x\)位的余数实际上是\(a\times k^x\bmod b\)

所以我们需要满足

\[a\equiv a \times k^x\pmod b
\]

有解

因为\((a,b)=1\),所以

\[k^x\equiv 1\pmod b
\]

若\((k,b)=1\),那么由欧拉定理,有解\(x=\varphi(x)\)

否则由于\(k\times k^{x-1}-yb=1\)无整数解解,所以原式无解

于是我们需要统计的即为

\[\sum_{i=1}^m\sum_{j=1}^n[(i,k)=1][(i,j)=1]
\]

推式子

\[\begin{aligned}
&\sum_{i=1}^m\sum_{j=1}^n[(i,k)=1][(i,j)=1]\\
=&\sum_{i=1}^m[(i,k)=1]\sum_{j=1}^n\sum_{d=1}^{\min(i,j)}\mu(d)[d|i\land d|j]\\
=&\sum_{d=1}^{\min(n,m)}\mu(d)\lfloor\frac{n}{d}\rfloor\sum_{i=1}^m[(i,k)=1\land d|i]\\
=&\sum_{d=1}^{\min(n,m)}\mu(d)\lfloor\frac{n}{d}\rfloor\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}[(di,k)=1]\\
=&\sum_{d=1}^{\min(n,m)}\mu(d)[(d,k)=1]\lfloor\frac{n}{d}\rfloor\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}[(i,k)=1]\\
\end{aligned}
\]

我们知道\((a,b)=(a\bmod b,b)\)

然后本题的\(k\)很小,于是我们可以预处理出

\[is(i)=[(i,k)=1]\\
f(i)=\sum_{j=1}^iis(j)
\]

然后上面的式子为

\[\sum_{d=1}^{\min(n,m)}\mu(d)is(d\bmod k)\lfloor\frac{n}{d}\rfloor(\lfloor\frac{m}{dk}\rfloor f(k)+f(\lfloor\frac{m}{d}\rfloor \bmod k))
\]

于是我们可以在\(O(k\log k+n)\)的时间内解决问题,可以得到\(84\)分的好成绩

注意我们设

\[F(n)=\lfloor\frac{n}{k}\rfloor f(k)+f(n\bmod k)
\]

那么原式为

\[\sum_{d=1}^{\min(n,m)}\mu(d)[(d,k)=1]\lfloor\frac{n}{d}\rfloor F(\lfloor\frac{m}{d}\rfloor)
\]

后面两项显然可以整除分块,考虑求出前面两项的前缀和

\[g(n,k)=\sum_{d=1}^n\mu(d)[(d,k)=1]
\]

考虑推一下这个式子

\[\begin{aligned}
g(n,k)=&\sum_{d=1}^n\mu(d)[(d,k)=1]\\
=&\sum_{d=1}^n\mu(d)\sum_{p=1}^{\min(d,k)}\mu(p)[p|d\land p|k]\\
=&\sum_{p|k}\mu(p)\sum_{p|d}^n\mu(d)\\
=&\sum_{p|k}\mu(p)\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(dp)\\
\mathbb{because \ of}& \ [\mu(dp)\not=0]=[(d,p)=1],\mathbb{so}\\
g(n,k)=&\sum_{p|k}\mu(p)\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(dp)[(d,p)=1]\\
=&\sum_{p|k}\mu^2(p)\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)[(d,p)=1]\\
=&\sum_{p|k}\mu^2(p)g(\lfloor\frac{n}{p}\rfloor,p)
\end{aligned}
\]

边界

\[g(n,1)=\sum_{d=1}^n\mu(d),g(0,k)=0
\]

前面的一个杜教筛一下即可

复杂度真不会算了...


Code:

#include <cstdio>
#include <cctype>
#include <map>
#include <algorithm>
#define ll long long
using std::min;
const int SIZE=1<<21;
char ibuf[SIZE],*iS,*iT;
//#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin),iS==iT?EOF:*iS++):*iS++)
#define gc() getchar()
template <class T>
void read(T &x)
{
x=0;char c=gc();
while(!isdigit(c)) c=gc();
while(isdigit(c)) x=x*10+c-'0',c=gc();
}
const int N=5e6+1;
int mu[N],pri[N],ispri[N],fmu[N],cnt,toki[2020],aya[2020];
void init()
{
fmu[1]=mu[1]=1;
for(int i=2;i<N;i++)
{
if(!ispri[i])
{
pri[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&i*pri[j]<N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]) mu[i*pri[j]]=-mu[i];
else break;
}
fmu[i]=fmu[i-1]+mu[i];
}
}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
std::map <std::pair<int,int>,int> saki;
int g(int x,int k)
{
//if(x<=1) return n;
if((k==1&&x<N)||(!x)) return fmu[x];
std::pair<int,int> now=std::make_pair(x,k);
if(saki[now]) return saki[now];
int ret=0;
if(k==1)
{
ret=1;
for(int l=2,r;l<=x;l=r+1)
{
r=x/(x/l);
ret-=g(x/l,k)*(r+1-l);
}
}
else
{
for(int i=1;i*i<=k;i++)
{
if(k%i) continue;
if(mu[i]) ret+=g(x/i,i);
if(i*i!=k&&mu[k/i]) ret+=g(x/(k/i),k/i);
}
}
return saki[now]=ret;
}
int n,m,k;
int F(int x){return (x/k)*toki[k]+toki[x%k];}
int main()
{
init();
read(n),read(m),read(k);
for(int i=1;i<=k;i++)
toki[i]=toki[i-1]+(gcd(k,i)==1);
ll las=0,now,ans=0;
for(int l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=1ll*((now=g(r,k))-las)*(n/l)*F(m/l);
las=now;
}
printf("%lld\n",ans);
return 0;
}

2019.5.30

「NOI2016」循环之美 解题报告的更多相关文章

  1. LibreOJ2085 - 「NOI2016」循环之美

    Portal Description 给出\(n,m(n,m\leq10^9)\)和\(k(k\leq2000)\),求在\(k\)进制下,有多少个数值不同的纯循环小数可以表示成\(\dfrac{x} ...

  2. 「NOI2016」优秀的拆分 解题报告

    「NOI2016」优秀的拆分 这不是个SAM题,只是个LCP题目 95分的Hash很简单,枚举每个点为开头和末尾的AA串个数,然后乘一下之类的. 考虑怎么快速求"每个点为开头和末尾的AA串个 ...

  3. 「NOI2016」循环之美

    P1587 [NOI2016]循环之美 题目描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 $k$ 进制下,一个数的小数部分是纯循环的,那么它就 ...

  4. *LOJ#2085. 「NOI2016」循环之美

    $n \leq 1e9,m \leq 1e9,k \leq 2000$,求$k$进制下$\frac{x}{y}$有多少种不同的纯循环数取值,$1 \leq x \leq n,1 \leq y \leq ...

  5. LOJ 2085: 洛谷 P1587: bzoj 4652: 「NOI2016」循环之美

    题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \( ...

  6. 「NOI2016」循环之美(小性质+min_25筛)

    传送门. 题解 感觉这题最难的是第一个结论. x/y首先要互质,然后如果在10进制是纯循环小数,不难想到y不是2.5的倍数就好了. 因为十进制下除以2和5是除得尽的. 必然会多出来的什么东西. 如果是 ...

  7. 【LOJ】#2085. 「NOI2016」循环之美

    题解 我们要求的其实是这个东西= = \(\sum_{i = 1}^{n}\sum_{j = 1}^{n}[(i,j) == 1][(j,k) == 1]\) 然后变一下形 \(\sum_{j = 1 ...

  8. 洛谷 P4714 「数学」约数个数和 解题报告

    P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点 ...

  9. 「NOI2013」树的计数 解题报告

    「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...

随机推荐

  1. 【leetcode】934. Shortest Bridge

    题目如下: In a given 2D binary array A, there are two islands.  (An island is a 4-directionally connecte ...

  2. Halo(一)

    @EnableJpaAuditing 审计功能(启动类配置) 在实际的业务系统中,往往需要记录表数据的创建时间.创建人.修改时间.修改人. 每次手动记录这些信息比较繁琐,SpringDataJpa 的 ...

  3. 文本处理工具——sed进阶

    一sed的搜索替代 (一)常见的和替代相关的选项 搜索替代,和vim的写法很像 s///:查找替换,支持使用其它分隔符,s@@@,s### p: 显示替换成功的行,就是打印. w /PATH/TO/S ...

  4. Android 测试点归纳总结

    前言 除了测试平台工具,业务测试的总结和思考同样重要,这里总结了一些Android测试知识点,可以辅助业务测试快速形成测试用例和检查点,当作抛砖引玉分享给大家.如有思考不全面的地方,欢迎大家指出来. ...

  5. 一个python练习

    问题描述: 有一对兔子,每隔3个月就生一对兔子,生下来的兔子也是每隔3个月就生兔子,以此类推... 用python模拟出来: #!/usr/bin/python3 import random impo ...

  6. Jlink 接口定义

    JTAG有10pin的.14pin的和20pin的,尽管引脚数和引脚的排列顺序不同,但是其中有一些引脚是一样的,各个引脚的定义如下. 1. 引脚定义 Test Clock Input (TCK) -- ...

  7. 利用HTML制作一个简单的界面(工具HBuilder)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"><!--标题,里面填写 ...

  8. SpringBoot扫描不到类,注入失败A component required a bean of type 'XXService' that could...

    SpringBoot项目的Bean装配默认规则是根据Application类所在的包位置从上往下扫描! “Application类”是指SpringBoot项目入口类.这个类的位置很关键: 如果App ...

  9. 38-python基础-python3-检查字典中是否存在键或值

    in 和 not in 操作符   请注意, 在前面的例子中,‘name’ in spam 本质上是一个简写版本.相当于'name' in spam.keys()

  10. CF1223D

    CF1223D 不需要动的一定值域连续 #include<iostream> #include<cstring> #include<cstdio> #include ...