QR分解:

有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法

具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6f9.html

迭代格式

实际在进行QR分解之前一般将矩阵化为上hessnberg矩阵(奈何这个过程比较难以理解,本人智商不够,就不做这一步了哈哈哈)

迭代终止条件

看了很多文章都是设置一个迭代次数,感觉有些不是很合理,本来想采用A(k+1)-A(k)的对角线元素的二范数来作为误差的,但是我有没有一些严格的证明,所以本文也采用比较大众化的思路,设置迭代次数。

Python实现

 M = [[2, 4, 2], [-1, 0, -4], [2, 2, 1]]

 import copy
import math class QR(object): def __init__(self, data):
self.M = data
self.degree = len(data) def get_row(self, index):
res = []
for i in range(self.degree):
res.append(self.M[i][index])
return res def get_col(self, index):
res = []
for i in range(self.degree):
res.append(self.M[i][index])
return res @staticmethod
def dot(m1, m2):
res = 0
for i in range(len(m1)):
res += m1[i] * m2[i]
return res @staticmethod
def list_multi(k, lt):
res = []
for i in range(len(lt)):
res.append(k * lt[i])
return res @staticmethod
def one_item(x, yArr):
res = [0 for i in range(len(x))]
temp_y_arr = [] n = len(yArr)
if n == 0:
res = x
else:
for item in yArr:
k = QR.dot(x, item) / QR.dot(item, item)
temp_y_arr.append(QR.list_multi(-k, item))
temp_y_arr.append(x) for item in temp_y_arr:
for i in range(len(item)):
res[i] += item[i]
return res @staticmethod
def normal(matrix):
yArr = []
yArr.append(matrix[0]) for i in range(1, len(matrix)):
yArr.append(QR.one_item(matrix[i], yArr))
return yArr @staticmethod
def normalized(lt):
res = []
sm = 0
for item in lt:
sm += math.pow(item, 2)
sm = math.sqrt(sm)
for item in lt:
res.append(item / sm)
return res @staticmethod
def matrix_T(matrix):
mat = copy.deepcopy(matrix)
m = len(mat[0])
n = len(mat)
for i in range(m):
for j in range(n):
if i < j:
temp = mat[i][j]
mat[i][j] = mat[j][i]
mat[j][i] = temp
return mat @staticmethod
def matrix_multi(mat1, mat2):
res = []
rows = len(mat1[0])
cols = len(mat1)
for i in range(rows):
temp = [0 for i in range(cols)]
res.append(temp) for i in range(rows):
for j in range(cols):
sm = 0
for k in range(cols):
sm += (mat1[k][i] * mat2[j][k])
res[j][i] = sm
return res def execute(self):
xArr = []
for i in range(self.degree):
xArr.append(self.get_col(i))
yArr = QR.normal(xArr)
self.Q = []
for item in yArr:
self.Q.append(QR.normalized(item)) self.R = QR.matrix_multi(QR.matrix_T(self.Q), xArr)
return (self.Q, self.R) # A = [
# [1, 0, -1, 2, 1],
# [3, 2, -3, 5, -3],
# [2, 2, 1, 4, -2],
# [0, 4, 3, 3, 1],
# [1, 0, 8, -11, 4]
# ]
# A = [
# [1, 2, 2],
# [2, 1, 2],
# [2, 2, 1]
# ]
A = [
[3, 2, 4],
[2, 0, 2],
[4, 2, 3]
] temp = copy.deepcopy(A)
val = [] # 特征值
times = 20 # 迭代次数
for i in range(times):
qr = QR(temp)
(q, r) = qr.execute()
temp = QR.matrix_multi(r, q)
temp = QR.matrix_T(temp) for i in range(len(temp)):
for j in range(len(temp[0])):
if i == j:
val.append(temp[i][j])
# 特征值
print(val)

结果展示

总结

使用QR分解迭代求特征值,收敛的比较快,也可以求出所有的特征值,但是如果要求特征向量的话,还是需要求解线性方程组(感觉很麻烦)

QR分解迭代求特征值——原生python实现(不使用numpy)的更多相关文章

  1. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  2. QR分解与最小二乘

    主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现   一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...

  3. QR分解与最小二乘(转载自AndyJee)

    转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...

  4. QR 分解

    将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...

  5. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  6. MATLAB线性方程组的迭代求解法

    MATLAB线性方程组的迭代求解法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验目的 1. 借助矩阵按模最大特征值,判断解方程组的Jacobi ...

  7. 牛顿法求极值及其Python实现

    最初对于牛顿法,我本人是一脸懵的.其基本原理来源于高中知识.在如下图所示的曲线,我们需要求的是f(x)的极值: 对于懵的原因,是忘记了高中所学的点斜式,直接贴一张高中数学讲义: 因为我们一路沿着x轴去 ...

  8. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  9. 矩阵QR分解

    1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为  ...

随机推荐

  1. WPF子线程更新UI(Dispatcher.BeginInvoke)

       在做WPF开发时,如果直接在子线程里更新UI会报错—–“调用线程无法访问此对象,因为另一个线程拥有该对象.”,这是因为WPF禁止在非UI线程里直接更新UI界面. 解决方案:   在子线程里调用D ...

  2. C语言:二维数组,(杨辉三角)

    二维数组:一维数组中的元素又是一个数组.声明的语法:数据类型 数组名[一维长度][二维长度]; int num[3][2]; 注意:int[][2];正确 int[2][];错误 二维数组中: 一维可 ...

  3. login 模块,re 模块

    标准三流 标准输入流:sys. stdin # input的底层 标准输出流:sys. stdout     # print的底层 标准错误流:sys. stderr      # 异常及loggin ...

  4. xDeepFM

    1. xDeepFM优势 自动高效的学习隐式和显示的高维特征交互 设计一个新的CIN网络可以显示学习高阶特征交互,且为Vector-Wise 2. xDeepFM整体算法框架    整个网络结构主要分 ...

  5. [转帖] Linux下面计算文件数量的方法

    Linux命令-查看目录下文件个数 2018年07月04日 10:37:07 sand_clock 阅读数 2002    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blo ...

  6. 【案例分享】在 React 框架中使用 SpreadJS 纯前端表格控件

    [案例分享]在 React 框架中使用 SpreadJS 纯前端表格控件 本期葡萄城公开课,将由国电联合动力技术有限公司,资深前端开发工程师——李林慧女士,与大家在线分享“在 React 框架中使用 ...

  7. Java中的mutable和immutable对象实例讲解

    1.mutable(可变)和immutable(不可变)类型的区别 可变类型的对象:提供了可以改变其内部数据值的操作,其内部的值可以被重新更改. 不可变数据类型:其内部的操作不会改变内部的值,一旦试图 ...

  8. 草地排水 洛谷P2740 最大流 入门题目

    草地排水 洛谷P2740 最大流入门题目 题意 在农夫约翰的农场上,每逢下雨,贝茜最喜欢的三叶草地就积聚了一潭水.这意味着草地被水淹没了,并且小草要继续生长还要花相当长一段时间.因此,农夫约翰修建了一 ...

  9. CSP 命令行选项(201403-3)

    问题描述 请你写一个命令行分析程序,用以分析给定的命令行里包含哪些选项.每个命令行由若干个字符串组成,它们之间恰好由一个空格分隔.这些字符串中的第一个为该命令行工具的名字,由小写字母组成,你的程序不用 ...

  10. eclipse运行jsp出现404错误怎么办?

    Window/Show View/Other/Server/Servers/双击“Tomcat v7.0 Server at localhost”在Server Locations配置中选择第二个选项 ...