QR分解迭代求特征值——原生python实现(不使用numpy)
QR分解:

有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法
具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6f9.html
迭代格式

实际在进行QR分解之前一般将矩阵化为上hessnberg矩阵(奈何这个过程比较难以理解,本人智商不够,就不做这一步了哈哈哈)
迭代终止条件
看了很多文章都是设置一个迭代次数,感觉有些不是很合理,本来想采用A(k+1)-A(k)的对角线元素的二范数来作为误差的,但是我有没有一些严格的证明,所以本文也采用比较大众化的思路,设置迭代次数。
Python实现
M = [[2, 4, 2], [-1, 0, -4], [2, 2, 1]] import copy
import math class QR(object): def __init__(self, data):
self.M = data
self.degree = len(data) def get_row(self, index):
res = []
for i in range(self.degree):
res.append(self.M[i][index])
return res def get_col(self, index):
res = []
for i in range(self.degree):
res.append(self.M[i][index])
return res @staticmethod
def dot(m1, m2):
res = 0
for i in range(len(m1)):
res += m1[i] * m2[i]
return res @staticmethod
def list_multi(k, lt):
res = []
for i in range(len(lt)):
res.append(k * lt[i])
return res @staticmethod
def one_item(x, yArr):
res = [0 for i in range(len(x))]
temp_y_arr = [] n = len(yArr)
if n == 0:
res = x
else:
for item in yArr:
k = QR.dot(x, item) / QR.dot(item, item)
temp_y_arr.append(QR.list_multi(-k, item))
temp_y_arr.append(x) for item in temp_y_arr:
for i in range(len(item)):
res[i] += item[i]
return res @staticmethod
def normal(matrix):
yArr = []
yArr.append(matrix[0]) for i in range(1, len(matrix)):
yArr.append(QR.one_item(matrix[i], yArr))
return yArr @staticmethod
def normalized(lt):
res = []
sm = 0
for item in lt:
sm += math.pow(item, 2)
sm = math.sqrt(sm)
for item in lt:
res.append(item / sm)
return res @staticmethod
def matrix_T(matrix):
mat = copy.deepcopy(matrix)
m = len(mat[0])
n = len(mat)
for i in range(m):
for j in range(n):
if i < j:
temp = mat[i][j]
mat[i][j] = mat[j][i]
mat[j][i] = temp
return mat @staticmethod
def matrix_multi(mat1, mat2):
res = []
rows = len(mat1[0])
cols = len(mat1)
for i in range(rows):
temp = [0 for i in range(cols)]
res.append(temp) for i in range(rows):
for j in range(cols):
sm = 0
for k in range(cols):
sm += (mat1[k][i] * mat2[j][k])
res[j][i] = sm
return res def execute(self):
xArr = []
for i in range(self.degree):
xArr.append(self.get_col(i))
yArr = QR.normal(xArr)
self.Q = []
for item in yArr:
self.Q.append(QR.normalized(item)) self.R = QR.matrix_multi(QR.matrix_T(self.Q), xArr)
return (self.Q, self.R) # A = [
# [1, 0, -1, 2, 1],
# [3, 2, -3, 5, -3],
# [2, 2, 1, 4, -2],
# [0, 4, 3, 3, 1],
# [1, 0, 8, -11, 4]
# ]
# A = [
# [1, 2, 2],
# [2, 1, 2],
# [2, 2, 1]
# ]
A = [
[3, 2, 4],
[2, 0, 2],
[4, 2, 3]
] temp = copy.deepcopy(A)
val = [] # 特征值
times = 20 # 迭代次数
for i in range(times):
qr = QR(temp)
(q, r) = qr.execute()
temp = QR.matrix_multi(r, q)
temp = QR.matrix_T(temp) for i in range(len(temp)):
for j in range(len(temp[0])):
if i == j:
val.append(temp[i][j])
# 特征值
print(val)
结果展示

总结
使用QR分解迭代求特征值,收敛的比较快,也可以求出所有的特征值,但是如果要求特征向量的话,还是需要求解线性方程组(感觉很麻烦)
QR分解迭代求特征值——原生python实现(不使用numpy)的更多相关文章
- 机器学习中的矩阵方法03:QR 分解
1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...
- QR分解与最小二乘
主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...
- QR分解与最小二乘(转载自AndyJee)
转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...
- QR 分解
将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质. 预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...
- QR分解
从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...
- MATLAB线性方程组的迭代求解法
MATLAB线性方程组的迭代求解法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验目的 1. 借助矩阵按模最大特征值,判断解方程组的Jacobi ...
- 牛顿法求极值及其Python实现
最初对于牛顿法,我本人是一脸懵的.其基本原理来源于高中知识.在如下图所示的曲线,我们需要求的是f(x)的极值: 对于懵的原因,是忘记了高中所学的点斜式,直接贴一张高中数学讲义: 因为我们一路沿着x轴去 ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- 矩阵QR分解
1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量 相互垂直,且模长为1: 如果将 orthonormal 向量按列组织成矩阵,矩阵为 ...
随机推荐
- ubuntu显卡(NVIDIA)驱动以及对应版本cuda&cudnn安装
(已禁用集显,禁用方法可自行百度) 驱动在线安装方式进入tty文本模式ctrl+alt+F1关闭显示服务sudo service lightdm stop卸载原有驱动sudo apt-get remo ...
- Redundant Connection
In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...
- GrapeCity Documents for Excel 文档API组件 V2.2 新特性介绍
GrapeCity Documents for Excel 文档API组件 V2.2 正式发布,本次新版本包含诸多重量级产品功能,如:将带有形状的电子表格导出为 PDF.控制分页和电子表格内容.将Ex ...
- python之cookies
#cookies保存在文档头的内部,将cookies信息保存在文档中 userinfo={'} r=requests.get('http://httpbin.org/get',cookies=user ...
- java开发性能调优
从总体上来看,对于大型网站,比如门户网站,在面对大量用户访问.高并发请求方面,基本的解决方案集中在这样几个环节:1.首先需要解决网络带宽和Web请求的高并发,需要合理的加大服务器和带宽的投入,并且需要 ...
- java 8 date time 简单样例
参考 Java 8 Time Api 使用指南-珍藏限量版 Java 8 中处理日期和时间示例 部分样例 import java.time.temporal.TemporalAdjusters; im ...
- python内置函数简单归纳
做python小项目的时候发现熟练运用python内置函数,可以节省很多的时间,在这里整理一下,便于以后学习或者工作的时候查看.函数的参数可以在pycharm中ctrl+p查看. 1.abs(x):返 ...
- document.body.scrollTop无效的解决方法
1.document.body.scrollTop = 0 有时候不生效,两种解决方案,试试看. 1-1.设置:document.documentElement.scrollTop = 0;1-2.设 ...
- TypeScript 和 JavaScript 的区别
TypeScript 和 JavaScript 是目前项目开发中较为流行的两种脚本语言,我们已经熟知 TypeScript 是 JavaScript 的一个超集.JavaScript 和 TypeSc ...
- 第七篇 CSS盒子
CSS盒子模型 在页面上,我们要控制元素的位置,比如:写作文一样,开头的两个字会空两个格子(这是在学校语文作文一样),其后就不会空出来,还有,一段文字后面跟着一张图,它们距离太近,不好看,我们要移 ...