BUUCTF--rsa
文件分析
第一次遇到这种题,不过看到题目知道这是一个rsa解密题。
公钥n = p * q,其中p和q是两个大素数
e是随机选择的数,作为公钥
d是跟e有关的一个数,满足条件式:ed=1(mod phi(n))
phi(n)是欧拉函数,phi(n)=(p-1)(q-1)
转自:https://blog.csdn.net/kevin66654/article/details/54087647
pub.key是公钥,flag.enc是rsa加密后的文件,因此我们只要通过公钥文件解析出n,e,p,q,d,再利用脚本解密rsa加密文件。
公钥处理
提取公钥
IDA打开pub.key后,转换里面的十六进制为字符串,提取出公钥。
-----BEGIN PUBLIC KEY-----
MDwwDQYJKoZIhvcNAQEBBQADKwAwKAIhAMAzLFxkrkcYL2wch21CM2kQVFpY9++
/AvKr1rzQczdAgMBAAE=
-----END PUBLIC KEY-----
公钥解析(提取e,n)
在http://tool.chacuo.net/cryptrsakeyparse对公钥进行解析
公钥指数及模数信息:
| key长度: | 256 |
| 模数: | C0332C5C64AE47182F6C1C876D42336910545A58F7EEFEFC0BCAAF5AF341CCDD |
| 指数: | 65537 (0x10001) |
获取到
e = 65537
n=86934482296048119190666062003494800588905656017203025617216654058378322103517(模数转换为十进制)
公钥解析(提取p,q)
使用yahu或者http://www.factordb.com/index.php?query=86934482296048119190666062003494800588905656017203025617216654058378322103517 通过n解析p,q


p = 285960468890451637935629440372639283459
q = 304008741604601924494328155975272418463
脚本解密
import gmpy2
import rsa e = 65537
n = 86934482296048119190666062003494800588905656017203025617216654058378322103517
p = 285960468890451637935629440372639283459
q = 304008741604601924494328155975272418463 phin = (q-1)*(p-1)
d = gmpy2.invert(e, phin) key = rsa.PrivateKey(n, e, int(d), p, q) with open("C:\\Users\\10245\\Desktop\\output\\flag.enc", "rb+") as f:
f = f.read()
print(rsa.decrypt(f, key))

get flag!
flag{decrypt_256}
想要详细了解CTF中的rsa,可以看看https://err0rzz.github.io/2017/11/14/CTF%E4%B8%ADRSA%E5%A5%97%E8%B7%AF/
BUUCTF--rsa的更多相关文章
- 简单RSA攻击方式
RSA攻击方式总结 1.模数分解 1).解题思路 a).找到RSA算法中的公钥(e,n) b).通过n来找到对应的p和q,然后求得φ(n) c).通过gmpy2.invert或者gmpy2 ...
- BUUCTF平台:RSA
RSA import gmpy2 def Decrypt(c,e,p,q): L=(p-1)*(q-1) d=gmpy2.invert(e,L) n=p*q m=gmpy2.powmod(c,d,n) ...
- [BUUCTF]REVERSE——rsa
rsa 附件 题目是rsa,首先了解一下什么是rsa加密,具体的看这个文章 首先大概介绍下RSA加密解密 RSA加密是对明文的E次方后除以N后求余数的过程 公钥n = p * q,其中p和q是两个大素 ...
- BUUCTF 部分wp
目录 Buuctf crypto 0x01传感器 提示是曼联,猜测为曼彻斯特密码 wp:https://www.xmsec.cc/manchester-encode/ cipher: 55555555 ...
- BUUCTF Crypto
BUUCTF 几道crypto WP [AFCTF2018]Morse 简单的莫尔斯密码,最直观的莫尔斯密码是直接采用空格分割的点和划线,这题稍微绕了一下使用的是斜杠来划分 所以首先将斜杠全部替换为空 ...
- Wilson's theorem在RSA题中运用
引言 最近一段时间在再练习数论相关的密码学题目,自己之前对于数论掌握不是很熟练,借此机会先对数论基本的四大定理进行练习 这次的练习时基于Wilson's theorem(威尔逊定理)在RSA题目中的练 ...
- 什么是RSA
一.RSA引入: RSA是什么,嗯,这是一个好问题,有没有兴趣啊 二.RSA的解释: RSA是一种加密方式,它是现代密码学的代表(什么是现代密码学,这个吗,我感觉就是我们所使用的密码的加密的方式之一可 ...
- “不给力啊,老湿!”:RSA加密与破解
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 加密和解密是自古就有技术了.经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫 ...
- .NET 对接JAVA 使用Modulus,Exponent RSA 加密
最近有一个工作是需要把数据用RSA发送给Java 虽然一开始标准公钥 net和Java RSA填充的一些算法不一样 但是后来这个坑也补的差不多了 具体可以参考 http://www.cnblogs. ...
- [C#] 简单的 Helper 封装 -- SecurityHelper 安全助手:封装加密算法(MD5、SHA、HMAC、DES、RSA)
using System; using System.IO; using System.Security.Cryptography; using System.Text; namespace Wen. ...
随机推荐
- 对includes的研究
1.includes() 方法用来判断一个数组是否包含一个指定的值,如果是返回 true,否则false. 2.let site = ['runoob', 'google', 'taobao']; s ...
- SQL Server2008收缩日志文件
查询状态语句: SELECT name,log_reuse_wait_desc FROM sys.databases where name='hrsystem'; 收缩日志文件: USE [maste ...
- zrender的线性渐变
线性渐变 官方文档是这样写的 实际运用是酱紫的 在把颜色放背景中 小白一枚,路过大神,多多指教.欢迎留下宝贵意见
- 超赞的Linux软件分享(持续更新)
开发 Android studio - Android 的官方 IDE:Android Studio 提供在各种类型的安卓设备上构建应用最快的工具. Aptana - Aptana Studio 利用 ...
- java 如何实现大文件上传下载(传输)各种格式
我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用. 首先我们需要了解的是上传文件三要素: 1.表单提交方式:post (get方式提交有大小 ...
- Supervised pre-trainning有监督预训练
如我们有一个分类任务,数据库很小,这时还是需要通过预训练来避免深度模型的过拟合问题的,只不过预训练是通过在一个大的数据库上(比如imagenet),通过有监督的训练来完成的.这种有监督预训练加小的数据 ...
- input 的 type 等于 file
高版本浏览器由安全问题没法获得文件的绝对路径, 因此使用浏览器自制播放器只能使用其他的手段实现. 使用相对路径, 把浏览器与文件放在同一路径下即可使用.通用性受到限制.
- BigDecimal.setScale 处理java小数点[转]
BigDecimal.setScale()方法用于格式化小数点setScale(1)表示保留一位小数,默认用四舍五入方式 setScale(1,BigDecimal.ROUND_DOWN)直接删除多余 ...
- 20180912-Java实例02
Java 实例 – 删除字符串中的一个字符 以下实例中我们通过字符串函数 substring() 函数来删除字符串中的一个字符,我们将功能封装在 removeCharAt 函数中. // Main.j ...
- SQL字串截取函数编写及应用
SQL里面一种用来截取字符串的方法,用的是表函数实现字符串截取并应用的SQL操作语句中. .截取字符串表函数 ALTER FUNCTION [dbo].[SplitToTable] ( -- Add ...