【洛谷P2602】数字计数
题目大意:求 [a,b] 中 0-9 分别出现了多少次。
题解:看数据范围应该是一个数位dp。
在 dfs 框架中维护当前的位置和到当前位置一共出现了多少个 \(x,x\in [0,9]\)。因此,用一个 dp[][] 数组记录一下状态即可,dp 的含义大概是前 i 位中出现了 j 个 x 的总 x 的个数是多少。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL dp[15][15];
int digit[15],tot,now;
LL dfs(int cur,int sum,bool lead,bool limit){
if(cur==0)return sum;
if(!lead&&!limit&&dp[cur][sum]!=-1)return dp[cur][sum];
LL ret=0;
int bit=limit?digit[cur]:9;
for(int i=0;i<=bit;i++){
if(!i&&lead)ret+=dfs(cur-1,sum,1,limit&&i==bit);
else if(i==now)ret+=dfs(cur-1,sum+1,0,limit&&i==bit);
else ret+=dfs(cur-1,sum,0,limit&&i==bit);
}
if(!lead&&!limit)dp[cur][sum]=ret;
return ret;
}
LL part(LL x){
tot=0;
memset(digit,0,sizeof(digit));
do{
digit[++tot]=x%10;
x/=10;
}while(x);
memset(dp,-1,sizeof(dp));
return dfs(tot,0,1,1);
}
int main(){
LL a,b;
cin>>a>>b;
for(int i=0;i<9;i++)now=i,printf("%lld ",part(b)-part(a-1));
now=9,printf("%lld\n",part(b)-part(a-1));
return 0;
}
【洛谷P2602】数字计数的更多相关文章
- 洛谷P2602 数字计数 [ZJOI2010] 数位dp
正解:数位dp 解题报告: 传送门! 打算在寒假把学长发过题解的题目都做辣然后把不会的知识点都落实辣! ⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄ 然后这道题,开始想到的时候其实想到的是大模拟,就有点像之前考试贪 ...
- 洛谷 - P2602 - 数字计数 - 数位dp
https://www.luogu.org/problemnew/show/P2602 第二道数位dp,因为“数位dp都是模板题”(误),所以是从第一道的基础上面改的. 核心思想就是分类讨论,分不同情 ...
- 洛谷 P2602(数位DP)
### 洛谷 P2602 题目链接 ### 题目大意:给你一个区间,问你区间所有数字中,0.1.2 .... 9 的个数的总和分别为多少. 分析: 枚举 0 ~ 9 进行数位 DP 即可. 注意记忆化 ...
- 洛谷P1118 数字三角形游戏
洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...
- 洛谷P1553 数字翻转(升级版)
题目链接 https://www.luogu.org/problemnew/show/P1553 题目描述 给定一个数,请将该数各个位上数字反转得到一个新数. 这次与NOIp2011普及组第一题不同的 ...
- 洛谷P1144-最短路计数-最短路变形
洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- 【题解】P2602 数字计数 - 数位dp
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...
随机推荐
- maven pom.xml设置jdk编译版本为1.8
<build> <finalName>myweb</finalName> <plugins> <!--JDK版本 --> <plugi ...
- Tomcat-8.5.39性能监控及调优
一.下载地址 https://tomcat.apache.org/download-80.cgi 二.安装步骤 将安装包 apache-tomcat-8.5.39.tar.gz 上传至服务器 /usr ...
- Elasticsearch 6.2.3版本 filtered 报错问题 no [query] registered for [filtered]
背景描述 近期在学习<Elasticsearch 权威指南>上的一些基本命令,在操作到 filtered 进行过滤查询的时候,报错 “no [query] registered for [ ...
- Several ports (8005, 8080, 8009) required by Tomcat v8.5 Server at localhost are already in use.
Several ports (8005, 8080, 8009) required by Tomcat v8.5 Server at localhost are already in use. The ...
- IIS部署网站 HTTP 错误 500.21 - Internal Server Error
HTTP 错误 500.21 - Internal Server Error处理程序“PageHandlerFactory-Integrated”在其模块列表中有一个错误模块“ManagedPipel ...
- cocos2dx[3.2](1) 浅析cocos2dx3.2引擎目录
3.x的引擎目录与2.x的引擎目录的差别是非常大的.3.x主要是将引擎的各个文件按照用途进行了分类,使得引擎目录结构更加清晰了. 从目录中我们主要了解一下以下几个文件: 文件名 说明 build 官方 ...
- 二叉搜索树倒序O(nlogn)建树
由于在某些糟糕情况下,二叉查找树会退化成链,故而朴素建树过程其复杂度可能会退化成\(O(n^2)\). 采用倒序连边建树的方法可以使得二叉查找树建树复杂度稳定在\(O(nlogn)\). 具体思路如下 ...
- CMDB 理论
TIL即IT基础架构库(Information Technology Infrastructure Library, ITIL,信息技术基础架构库)由英国政府部门CCTA(Central Comput ...
- tp5后台同步更新配置文件
thinkphp5 配置文件路径:app/extra/web.php public function add(){ $path = 'app/extra/web.php'; $file = inclu ...
- PostgreSQL-pg_ctl
命令简介 pg_ctl 启动.关闭.重启 postgres pg_ctl start [-w] [-s] [-D datadir] [-l filename] [-o options] [-p pat ...