Python3数据分析与挖掘建模实战 学习 教程
 
Python数据分析简介
Python入门
 
运行:cmd下"python hello.py"
 
基本命令:

第三方库
安装
Windows中
pip install numpy
或者下载源代码安装
python setup.py install
Pandas默认安装不能读写Excel文件,需要安装xlrd和xlwt库才能支持excel的读写
pip install xlrd
pip install xlwt
 
StatModel可pip可exe安装,注意,此库依赖于Pandas和patsy
 
Scikit-Learn是机器学习相关的库,但是不包含人工神经网络
 
model.fit() #训练模型,监督模型fit(X,y),非监督模型fit(X)
# 监督模型接口
model.predict(X_new) #预测新样本
model.predict_proba(X_new) #预测概率
model.score() #得分越高,fit越好
# 非监督模型接口
model.transform() #从数据中学到新的“基空间”
model.fit_transform() #从数据中学到新的基,并按照这组基进行转换
 
Keras是基于Theano的强化的深度学习库,可用于搭建普通神经网络,各种深度学习模型,如自编码器,循环神经网络,递归神经网络,卷积神经网络。Theano也是一个Python库,能高效实现符号分解,速度快,稳定性好,实现了GPU加速,在密集型数据处理上是CPU的10倍,缺点是门槛太高。Keras的速度在Windows会大打折扣。
 
Windows下:安装MinGWindows--安装Theano---安装Keras--安装配置CUDA
 
Gensim用来处理语言方面的任务,如文本相似度计算、LDA、Word2Vec等,建议在Windows下运行。
 
Linux中
 
sudo apt-get install python-numpy
sudo apt-get install python-scipy
sudo apt-get install python-matplotlib
 
使用
 
Matplotlib默认字体是英文,如果要使用中文标签,
 
plt.rcParams['font.sans-serif'] = ['SimHei']
 
保存作图图像时,负号显示不正常:
 
plt.rcParams['axes.unicode_minus'] = False
 
数据探索
 
脏数据:缺失值、异常值、不一致的值、重复数据
异常值分析
⦁ 简单统计量分析:超出合理范围的值
⦁ 3sigma原则:若正态分布,异常值定义为偏差超出平均值的三倍标准差;否则,可用远离平均值的多少倍来描述。
⦁ 箱型图分析:异常值定义为小于Q_L-1.5IQR或者大于Q_U +1.5IQR。Q_L是下四分位数,全部数据有四分之一比他小。Q_U是上四分位数。IQR称为四分位数间距,IQR=Q_U-Q_L

分布分析
定量数据的分布分析:求极差(max-min),决定组距和组数,决定分点,列出频率分布表,绘制频率分布直方图。
定性数据的分布分析:饼图或条形图
对比分析
统计量分析
集中趋势度量:均值、中位数、众数
离中趋势度量:极差、标准差、变异系数、四份位数间距
变异系数为:s表示标准差,x表示均值
 

周期性分析
贡献度分析
又称帕累托分析,原理是帕累托法则,即20/80定律,同样的投入放在不同的地方会产生不同的收益。

相关性分析
途径:绘制散点图、散点图矩阵、计算相关系数
Pearson相关系数:要求连续变量的取值服从正态分布。

$$
\begin{cases}
{|r|\leq 0.3}&\text{不存在线性相关}\
0.3 < |r| \leq 0.5&\text{低度线性相关}\
0.5 < |r| \leq 0.8&\text{显著线性相关}\
0.8 < |r| \leq 1&\text{高度线性相关}\
\end{cases}
$$
相关系数r的取值范围[-1, 1]
Spearman相关系数:不服从正态分布的变量、分类或等级变量之间的关联性可用该系数,也称等级相关系数。

对两个变量分别按照从小到大的顺序排序,得到的顺序就是秩。R_i表示x_i的秩次,Q_i表示y_i的秩次。
判定系数:相关系数的平方,用来解释回归方程对y的解释程度。

数据探索函数

电子商务网站用户行为分析及服务推荐
数据抽取:建立数据库--导入数据--搭建Python数据库操作环境
数据分析
⦁ 网页类型分析
⦁ 点击次数分析
⦁ 网页排名
数据预处理
⦁ 数据清洗:删除数据(中间页面网址、发布成功网址、登录助手页面)
⦁ 数据变化:识别翻页网址并去重,错误分类网址手动分类,并进一步分类
⦁ 属性规约:只选择用户和用户选择的网页数据
模型构建
基于物品的协同滤波算法:计算物品之间的相似度,建立相似度矩阵;根据物品的相似度和用户的历史行为给用户生成推荐列表。
相似度计算方法:夹角余弦、Jaccard系数、相关系数
财政收入影响因素分析及预测模型
数据分析
⦁ 描述性统计分析
⦁ 相关分析
模型构建
对于财政收入、增值税、营业税、企业所得税、政府性基金、个人所得税
⦁ Adaptive-Lasso变量选择模型:去除无关变量
⦁ 分别建立灰色预测模型与神经网络模型
基于基站定位数据的商圈分析
数据预处理
⦁ 属性规约:删除冗余属性,合并时间属性
⦁ 数据变换:计算工作日人均停留时间、凌晨、周末、日均等指标,并标准化。
模型构建
⦁ 构建商圈聚类模型:采用层次聚类算法
⦁ 模型分析:对聚类结果进行特征观察
电商产品评论数据情感分析
文本采集:八爪鱼采集器(爬虫工具)
文本预处理:
⦁ 文本去重:自动评价、完全重复评价、复制的评论
⦁ 机械压缩去词:
⦁ 删除短句
文本评论分词:采用Python中文分词包“Jieba”分词,精度达97%以上。
模型构建
⦁ 情感倾向性模型:生成词向量;评论集子集的人工标注与映射;训练栈式自编码网

Python3数据分析与挖掘建模实战 学习 教程的更多相关文章

  1. Python3数据分析与挖掘建模实战 ☝☝☝

    Python3数据分析与挖掘建模实战 Python数据分析简介 Python入门 运行:cmd下"python hello.py" 基本命令: 第三方库 安装 Windows中 p ...

  2. Python3数据分析与挖掘建模实战✍✍✍

    Python3数据分析与挖掘建模实战 Python数据分析简介 Python入门 运行:cmd下"python hello.py" 基本命令: 第三方库 安装 Windows中 p ...

  3. Python3数据分析与挖掘建模实战

    Python3数据分析与挖掘建模实战  整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时 ...

  4. 学习参考《Python数据分析与挖掘实战(张良均等)》中文PDF+源代码

    学习Python的主要语法后,想利用python进行数据分析,感觉<Python数据分析与挖掘实战>可以用来学习参考,理论联系实际,能够操作数据进行验证,基础理论的内容对于新手而言还是挺有 ...

  5. R学习:《R语言数据分析与挖掘实战》PDF代码

    分三个部分:基础篇.实战篇.提高篇.基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据 ...

  6. python数据分析与挖掘实战第二版pdf-------详细代码与实现

    [书名]:PYTHON数据分析与挖掘实战 第2版[作者]:张良均,谭立云,刘名军,江建明著[出版社]:北京:机械工业出版社[时间]:2020[页数]:340[isbn]:9787111640028 学 ...

  7. 《MATLAB数据分析与挖掘实战》赠书活动

    <MATLAB数据分析与挖掘实战>是泰迪科技在数据挖掘领域探索10余年经验总结与华南师大.韩山师院.广东工大.广技师   等高校资深讲师联合倾力打造的巅峰之作.全书以实践和实用为宗旨,深度 ...

  8. 零基础数据分析与挖掘R语言实战课程(R语言)

    随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...

  9. 【读书笔记与思考】《python数据分析与挖掘实战》-张良均

    [读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...

随机推荐

  1. tr 替换或删除字符

    1.命令功能 tr 从标准输入中替换,压缩间隔或者删除字符并从定向到标准输出. 2.语法格式 tr  option  SET1  SET2 参数 参数说明 -c 取代所有SET1中字符串 -d 删除所 ...

  2. Codeforces 961 容斥叉积判共线 树状数组递增思想题

    A B C D 给你N个点 问你能不能有两条直线穿过这N个点 首先假设这N个点是可以被两条直线穿过的 所以两条直线就把这N个点划分成两个集合 我们取1 2 3三个点这样必定会有两个点在一个集合内 ch ...

  3. vim查找和替换

    https://www.cnblogs.com/huxinga/p/7942194.html %s/husband/丈夫/g

  4. Linux shell 误操作

    shell脚本在日常运维中是必不可少会应用到,下面是自己亲身经历过的一件事.会了定期清除日志,编写了一个shell脚本,内容如下: [root@centos- tmp]# more remote_lo ...

  5. 排序二叉树、平衡二叉树、红黑树、B+树

    一.排序二叉树(Binary Sort Tree,BST树) 二叉排序树,又叫二叉搜索树.有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree). 1 ...

  6. Kettle整理

    下载kettle版本 (1)hadoop version 查看hadoop的版本    hadoop2.6 (2)则在data-integration\plugins\pentaho-big-data ...

  7. layui table 分页 记住之前勾选的数据

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. bzoj4998 星球联盟 LCT + 并查集

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4998 题解 根据题意,就是要动态维护点双,求出一个点双的权值和. 所以这道题就是和 bzoj2 ...

  9. 初始化一个React项目

    1.create-react-app是一个通过npm发布的安装包,在确认Node.js和npm安装好之后,输入下面命令创建. 2.安装结束后,使用下面命令创建应用目录. 3.打开目录 4.运行项目 5 ...

  10. k-means原理和python代码实现

    k-means:是无监督的分类算法 k代表要分的类数,即要将数据聚为k类; means是均值,代表着聚类中心的迭代策略. k-means算法思想: (1)随机选取k个聚类中心(一般在样本集中选取,也可 ...