LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
解题思路
好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个数分成\(m\)个圆排列的方案数,在这道题中,假如划分成圆排列之后,将圆排列从最大值处断开可以造成\(1\)的贡献。那么答案就为\(s(n-1,a+b-2)*C(a+b-2,a-1)\)。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=50005;
const int A=205;
const int MOD=1e9+7;
typedef long long LL;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,m,s[N][A],C[A][A],a,b;
inline void prework(){
C[0][0]=1;
for(int i=1;i<=200;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
s[0][0]=1; int Min;
for(int i=1;i<=200;i++) s[i][i]=1;
for(int i=1;i<=50000;i++){
Min=min(i,200);
for(int j=1;j<=Min;j++)
s[i][j]=(1ll*(i-1)*s[i-1][j]%MOD+s[i-1][j-1])%MOD;
}
}
int main(){
prework();
for(int T=rd();T;T--){
n=rd(),a=rd(),b=rd();
printf("%lld\n",1ll*C[a+b-2][a-1]*s[n-1][a+b-2]%MOD);
}
return 0;
}
LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)的更多相关文章
- Luogu4609 FJOI2016 建筑师 第一类斯特林数
题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- Luogu4609 FJOI2016建筑师(斯特林数)
显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- 【Luogu4609】建筑师(第一类斯特林数,组合数学)
[Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
随机推荐
- Bootstrap 学习笔记5 进度条媒体对象和well组件
代码: <ul class="media-list"> <li class="media"> <div class="m ...
- 软件体系结构-分层、代理、MVC、管道与过滤器
什么是软件架构? 程序或计算系统的软件体系结构是系统的一个或多个结构,包括软件元素.这些元素的外部可见属性以及它们之间的关系. ——Software Engineering Institute(SEI ...
- 任务调度(02)Spring Schedule
任务调度(02)Spring Schedule [toc] Spring 3.0 提供两种任务调度方式:一是定时任务调度:二是异步任务调度.这两种任务调度方式都是基于 JUC 实现的,是一种非常轻量级 ...
- 《剑指offer》面试题10 二进制中1的个数 Java版
书中方法一:对于每一位,用1求与,如果为1表明该位为1.一共要进行32次,int4字节32位. public int check(int a){ int result = 0; int judge = ...
- memset 初始化数组 & 实现原理
初始化数组可不必使用n重for循环. 原理 memset具有初始化数组的功能,能够初始化数组中的每一个值. 它是将数组中的每一个数的二进制的每一个字节初始化的. 比如初始化int类型的a数组:mems ...
- vue 当前页跳转并强制刷新
watch: { '$route'(to, from) { this.$router.go(0); } }, this.$router.push({ path: '/dashboard/XXZX?' ...
- C#设计模式:策略者模式(Stragety Pattern)
一,什么是策略模式? 1,针对同一命令或行为,不同的策略做不同的动作. 2,比如针对一组算法,将每个算法封装到具有公共接口的独立的类中,从而使它们可以相互替换.策略模式使得算法可以在不影响到客户端的情 ...
- C# 面试 笔试题
1.简述 private. protected. public. internal.protected internal 访问修饰符和访问权限 private : 私有成员, 在类的内部才可以访问. ...
- git 命令图解
git 命令图解 初始化版本库 git config user.name "lsgx" git config user.email "lsgxthink@163.co ...
- java crm 系统 进销存 springmvc SSM项目项目源码
统介绍: 1.系统采用主流的 SSM 框架 jsp JSTL bootstrap html5 (PC浏览器使用) 2.springmvc +spring4.3.7+ mybaits3.3 SSM 普 ...